Memory consumption if an example set gets cloned
Hi,
my custom WrapperXValidation operator consumes too much memory if the attribute weighted example set gets cloned, which results in a OutOfMemoryError. I have a ConditionedExampleSet created with a Condition which is used for calculating the AttributeWeights. Than I create an AttributeWeightedExampleSet. The memory consumption increases from ~300 MB to over 1,2GB. I have ~300 examples with ~2500 attributes. Any ideas what went wrong? The OOME occurs if createCleanClone() is called or when the k-Nearest-Neighbour learner is applied (see note "//FAILS HERE.." in source snippet). I don't have any problems if my custom XValidation operator (without attribute weighting) is used.
Snippet from custom WrapperXValidation:
Snippet from custom XValidation (no problem):
my custom WrapperXValidation operator consumes too much memory if the attribute weighted example set gets cloned, which results in a OutOfMemoryError. I have a ConditionedExampleSet created with a Condition which is used for calculating the AttributeWeights. Than I create an AttributeWeightedExampleSet. The memory consumption increases from ~300 MB to over 1,2GB. I have ~300 examples with ~2500 attributes. Any ideas what went wrong? The OOME occurs if createCleanClone() is called or when the k-Nearest-Neighbour learner is applied (see note "//FAILS HERE.." in source snippet). I don't have any problems if my custom XValidation operator (without attribute weighting) is used.
Snippet from custom WrapperXValidation:
for (final DocumentRDs testingDocumentRDs : splittedDocumentRDs) {
Listtraining = new ArrayList (splittedDocumentRDs);
training.remove(testingDocumentRDs);
final DocumentRDs trainingDocumentRDs = new DocumentRDs(inputDocumentRDs.getFacet(), training);
trainingDocumentRDs.setFeatureNames(inputDocumentRDs.getFeatureNames());
IOContainer resultFromOperator0 = getOperator(0).apply(new IOContainer(trainingDocumentRDs));
Model indexingModel = resultFromOperator0.get(Model.class);
IOContainer resultFromOperator1 = getOperator(1).apply(new IOContainer(inputDocumentRDs, indexingModel));
ExampleSet exampleSet = resultFromOperator1.get(ExampleSet.class);
ConditionedExampleSet trainingExampleSet = new ConditionedExampleSet(exampleSet, new Condition() {
private static final long serialVersionUID = -501393443936335688L;
私人设置<字符串> id = trainingDocumentRDs.getIds();
@Override
public boolean conditionOk(Example example) {
String id = example.getNominalValue(example.getAttributes().getId());
return ids.contains(id);
}
@Override
@Deprecated
public Condition duplicate() {
throw new UnsupportedOperationException();
}
});
ConditionedExampleSet testingExampleSet = new ConditionedExampleSet(exampleSet, new Condition() {
private static final long serialVersionUID = -8328394200676917060L;
private Setids = testingDocumentRDs.getIds();
@Override
public boolean conditionOk(Example example) {
String id = example.getNominalValue(example.getAttributes().getId());
return ids.contains(id);
}
@Override
@Deprecated
public Condition duplicate() {
throw new UnsupportedOperationException();
}
});
IOContainer resultFromOperator2 = getOperator(2).apply(new IOContainer(trainingExampleSet));
AttributeWeights attributeWeights = resultFromOperator2.get(AttributeWeights.class);
handleWeights(globalAttributeWeights, attributeWeights);
AttributeWeightedExampleSet attributeWeightedTrainingExampleSet = new AttributeWeightedExampleSet(trainingExampleSet, attributeWeights, 0);
ExampleSet c = attributeWeightedTrainingExampleSet.createCleanClone(); //FAILS HERE
IOContainer resultFromOperator3 = getOperator(3).apply(new IOContainer(c)); //OR HERE
Model model = resultFromOperator3.get(Model.class);
IOContainer resultFromOperator4 = getOperator(4).apply(new IOContainer(model, testingExampleSet));
Tools.handleAverages(resultFromOperator4, averageVectors, true);
inApplyLoop();
}
Snippet from custom XValidation (no problem):
for (final DocumentRDs testingDocumentRDs : splittedDocumentRDs) {Thanks
Listtraining = new ArrayList (splittedDocumentRDs);
training.remove(testingDocumentRDs);
final DocumentRDs trainingDocumentRDs = new DocumentRDs(inputDocumentRDs.getFacet(), training);
trainingDocumentRDs.setFeatureNames(inputDocumentRDs.getFeatureNames());
IOContainer resultFromOperator0 = getOperator(0).apply(new IOContainer(trainingDocumentRDs));
Model indexingModel = resultFromOperator0.get(Model.class);
IOContainer resultFromOperator1 = getOperator(1).apply(new IOContainer(inputDocumentRDs, indexingModel));
ExampleSet exampleSet = resultFromOperator1.get(ExampleSet.class);
ConditionedExampleSet trainingExampleSet = new ConditionedExampleSet(exampleSet, new Condition() {
private static final long serialVersionUID = -501393443936335688L;
私人设置<字符串> id = trainingDocumentRDs.getIds();
@Override
public boolean conditionOk(Example example) {
String id = example.getNominalValue(example.getAttributes().getId());
return ids.contains(id);
}
@Override
@Deprecated
public Condition duplicate() {
throw new UnsupportedOperationException();
}
});
ConditionedExampleSet testingExampleSet = new ConditionedExampleSet(exampleSet, new Condition() {
private static final long serialVersionUID = -8328394200676917060L;
private Setids = testingDocumentRDs.getIds();
@Override
public boolean conditionOk(Example example) {
String id = example.getNominalValue(example.getAttributes().getId());
return ids.contains(id);
}
@Override
@Deprecated
public Condition duplicate() {
throw new UnsupportedOperationException();
}
});
IOContainer resultFromOperator2 = getOperator(2).apply(new IOContainer(trainingExampleSet));
Model model = resultFromOperator2.get(Model.class);
IOContainer resultFromOperator3 = getOperator(3).apply(new IOContainer(model, testingExampleSet));
Tools.handleAverages(resultFromOperator3, averageVectors, true);
inApplyLoop();
}
Tagged:
0
Answers
actually I do not see the reason at a single glance but probably the amount of meta data for the 2500 attributes is too large for all the clones (although the data is not cloned the meta data is). For each attribute, you need about 1kb Metadata plus overhead meaning that you have about 2500 kb (2,5 MB) for each cloned view. If you have 100 individuals (AttributeWeightedExampleSets) in your weigting / selection / ... operator you get 250 MB (plus data etc). So this might explain the memory usage.
Bad news first: there is not much you can do about this right now.
But there are also good news: we are currently planning a code revision for the feature selection / weighting / construction operators relying on simpler data structures instead of cloned views which should further reduce the used memory.
Cheers,
Ingo