Problems with Linear Regression

majotecitamajotecita MemberPosts:10Contributor II
edited July 2019 inHelp
Hi,

I'm integrating RapidMiner with BizAgi through a Web Service.
In RapidMiner the process finished successfully; but when I use the Web Service I have this problem:

Feb 02, 2012 4:52:35 PM com.rapidminer.tools.WrapperLoggingHandler logWarning
WARNING: LinearRegression: The number of regular attributes of the given example set does not fit the number of attributes of the training example set, training: 0, application: 21

Can you please help me???
I don't know why it's working in RapidMiner but not in WS.

Thanks!
Tagged:

Answers

  • MariusHelfMariusHelf RapidMiner Certified Expert, MemberPosts:1,869Unicorn
    Hi,

    I don't know BizAgi, so I can't help you on that front. Anyways, can you please post your process setup? Seeherehow to do that.

    By the way, you can easily export RapidMiner processes via our RapidAnalytics server. You can download it from our website atwww.rapid-i.com.

    Best,
    Marius
  • majotecitamajotecita MemberPosts:10Contributor II
    Hi,

    Thanks for your reply.=)

    Here it's the my process setup:

























































































































    Thanks for the help!!!!
  • majotecitamajotecita MemberPosts:10Contributor II
    I forgot to put the xml code of the Model




    Linear Regression





    <客yValueMap id="3"/>









    <客yValueMap id="6"/>














    false




    <客yValueMap id="14"/>


    N-1
    3
    1
    0.0
    1

    gensym1


    4538.0
    367660.0
    58


    4538.0
    367660.0
    58.0
    58.0


    33.0
    106.0


    0








    false




    <客yValueMap id="25"/>


    N-2
    3
    1
    0.0
    2

    gensym2


    4511.0
    362935.0
    58


    4511.0
    362935.0
    58.0
    58.0


    33.0
    106.0


    0








    false




    <客yValueMap id="36"/>


    N-12
    3
    1
    0.0
    3

    gensym3


    4542.0
    367556.0
    58


    4542.0
    367556.0
    58.0
    58.0


    33.0
    106.0


    0








    false




    <客yValueMap id="47"/>


    N-24
    3
    1
    0.0
    4

    gensym4


    4596.0
    373862.0
    58


    4596.0
    373862.0
    58.0
    58.0


    48.0
    106.0


    0








    false




    <客yValueMap id="58"/>


    N-36
    3
    1
    0.0
    5

    gensym5


    4744.0
    400320.0
    58


    4744.0
    400320.0
    58.0
    58.0


    48.0
    116.0


    0








    false




    <客yValueMap id="69"/>


    N-12 - N-13
    3
    1
    0.0
    6

    gensym6


    11.0
    27823.0
    58


    11.0
    27823.0
    58.0
    58.0


    -49.0
    60.0


    0








    false




    <客yValueMap id="80"/>


  • majotecitamajotecita MemberPosts:10Contributor II
    N-24 - N-25
    3
    1
    0.0
    7

    gensym7


    18.0
    20788.0
    58


    18.0
    20788.0
    58.0
    58.0


    -39.0
    45.0


    0








    false




    <客yValueMap id="91"/>


    N-36 - N-37
    3
    1
    0.0
    8

    gensym8


    57.0
    21971.0
    58


    57.0
    21971.0
    58.0
    58.0


    -35.0
    45.0


    0








    false




    <客yValueMap id="102"/>


    ENERO
    2
    1
    0.0
    9

    gensym9


    4.0
    4.0
    58


    4.0
    4.0
    58.0
    58.0


    0.0
    1.0

    < UnknownStatistics id = " 108 " >
    0








    false




    <客yValueMap id="113"/>


    FEBRERO
    2
    1
    0.0
    10

    gensym10


    5.0
    5.0
    58


    5.0
    5.0
    58.0
    58.0


    0.0
    1.0


    0








    false




    <客yValueMap id="124"/>


    <名称>米ARZO
    2
    1
    0.0
    <指数> 11 > < /索引

    gensym11


    5.0
    5.0
    58


    5.0
    5.0
    58.0
    58.0


    0.0
    1.0


    0








    false




    <客yValueMap id="135"/>


    ABRIL
    2
    1
    0.0
    12

    gensym12


    5.0
    5.0
    58


    5.0
    5.0
    58.0
    58.0


    0.0
    1.0


    0








    false
    <属性类= " NumericalAttribute " id = " 144 "爵士ialization="custom">



    <客yValueMap id="146"/>


    <名称>米AYO
    2
    1
    0.0
    13

    gensym13


    5.0
    5.0
    58


    5.0
    5.0
    58.0
    58.0


    0.0
    1.0


    0








    false




    <客yValueMap id="157"/>


  • majotecitamajotecita MemberPosts:10Contributor II
    JUNIO
    2
    1
    0.0
    14

    gensym14


    5.0
    5.0
    58


    5.0
    5.0
    58.0
    58.0


    0.0
    1.0


    0








    false




    <客yValueMap id="168"/>


    JULIO
    2
    1
    0.0
    15

    gensym15
    <统计类=“链表”id = " 170 " >

    5.0
    5.0
    58


    5.0
    5.0
    58.0
    58.0


    0.0
    1.0


    0








    false




    <客yValueMap id="179"/>


    AGOSTO
    2
    1
    0.0
    16

    gensym16


    5.0
    5.0
    58


    5.0
    5.0
    58.0
    58.0


    0.0
    1.0


    0








    false




    <客yValueMap id="190"/>


    SEPTIEMBRE
    2
    1
    0.0
    17

    gensym17


    5.0
    5.0
    58


    5.0
    5.0
    58.0
    58.0


    0.0
    1.0


    0








    false




    <客yValueMap id="201"/>


    OCTUBRE
    2
    1
    0.0
    18

    gensym18


    5.0
    5.0
    58

    < WeightedNumericalStatistics id = " 205 " >
    5.0
    5.0
    58.0
    58.0


    0.0
    1.0


    0








    false




    <客yValueMap id="212"/>


    NOVIEMBRE
    2
    1
    0.0
    19

    gensym19


    5.0
    5.0
    58


    5.0
    5.0
    58.0
    58.0


    0.0
    1.0


    0








    false




    <客yValueMap id="223"/>


    DICIEMBRE
    2
    1
    0.0
    20

    gensym20


    4.0
    4.0
    58


    4.0
    4.0
    58.0
    58.0


    0.0
    1.0


    0








    false




    <客yValueMap id="234"/>



  • majotecitamajotecita MemberPosts:10Contributor II
    ANO
    3
    1
    0.0
    21

    gensym21


    178.0
    658.0
    58


    178.0
    658.0
    58.0
    58.0


    1.0
    5.0


    0








    true
    label




    <客yValueMap id="245"/>


    <名称>米es a predecir
    3
    1
    0.0
    0

    gensym


    4559.0
    370163.0
    58


    4559.0
    370163.0
    58.0
    58.0


    33.0
    106.0


    0
















    true

    N-1
    N-2
    N-12
    N-24
    N-36
    N-12 - N-13
    N-24 - N-25
    N-36 - N-37
    ENERO
    FEBRERO
    MARZO
    ABRIL
    MAYO
    JUNIO
    JULIO
    AGOSTO
    SEPTIEMBRE
    OCTUBRE
    NOVIEMBRE
    DICIEMBRE
    ANO


    N-1
    N-2
    N-12
    N-24
    N-36
    N-12 - N-13
    N-24 - N-25
    N-36 - N-37
    ENERO
    FEBRERO
    MARZO
    ABRIL
    MAYO
    JUNIO
    JULIO
    AGOSTO
    SEPTIEMBRE
    OCTUBRE
    NOVIEMBRE
    DICIEMBRE
    ANO


    -0.1560200102743829
    -0.17582029926206988
    -0.7740285937759676
    -0.9038269028374833
    -0.27059583303007956
    0.03136487189831409
    0.07417921264358038
    -0.16499163346747733
    -23.53272424185182
    -72.35609076674943
    43.96250138016959
    23.937786438834202
    -11.389953240598805
    -21.279898751022948
    34.41705460919363
    -33.34963144579091
    1.0942835995580047
    21.114800704201883
    10.462481523263921
    261.081519289433


    0.05087796639475228
    0.04255224037822547
    1.1620326620942478E-6
    2.1794326521273888E-7
    0.02011251571285999
    0.6755521409765789
    0.45459788921624245
    0.13889716022182363
    1.3100889736383792E-5
    1.793720727505388E-11
    2.233546902985495E-9
    3.976002860284211E-10
    0.0033410697757418895
    1.0197918736687406E-5
    1.2602130450289906E-10
    3.4509248236780365E-8
    0.7539947727520888
    3.1540859725120995E-6
    0.003286296075043049
    2.1094237467877974E-15


    true
    true
    true
    true
    true
    true
    true
    true
    true
    true
    true
    <布尔>足总lse
    true
    true
    true
    true
    true
    true
    true
    true
    <布尔>足总lse


    0.07490613629338166
    0.08139991691660807
    0.13394421596292033
    0.14329326372088502
    0.10949811029411527
    0.07340022974916523
    0.09672875542168176
    0.10150180556930871
    4.6957209507795294
    7.688815247033325
    5.651303989749064
    2.8665439770761494
    3.6085733582692794
    4.179668581654486
    3.93865185961039
    4.837778960039824
    3.423176424623841
    3.864817728019953
    3.308436990144783
    20.327756912254312


    -0.029648474020890977
    -0.03292043216656503
    -0.14263738541617635
    -0.1485518522426571
    -0.048585319967903356
    3.653651278846922
    4.564027723165906
    -3.291911862527626
    -87.21991496798663
    -237.63182121660725
    144.38161538998014
    78.61646099278232
    -37.406876234658206
    -69.88742816153336
    113.03246597524173
    -109.52683559029087
    3.5938454100387993
    69.34521327499581
    38.77735273803564
    NaN


    -2.082873553420323
    -2.1599567410147706
    -5.778738471172516
    -6.307532394530493
    -2.4712374697905823
    0.42731299350831803
    0.7668786010964543
    -1.6255044187841143
    -5.011525277698878
    -9.410564364213005
    7.7791783029038
    8.350748019310187
    -3.1563590676348565
    -5.091288540059193
    8.738283005443936
    -6.8935831341737
    0.31966906282905094
    5.463336744478127
    3.162363845655729
    12.843597078438279


    0.986567239383258
    0.9611854596305677
    0.4921026765694041
    0.5616411737244934
    0.6430673065002668
    0.7762687565576827
    0.8897249171463226
    0.7262628084378114
    0.9997237472897619
    0.8783561824658114
    0.9717415849780795
    0.9982649526072929
    0.9984553401618238
    0.9980507717160555
    0.9957964258366678
    0.9961696698152795
    0.9959108983078104
    0.9999959541777077
    0.9995788175164931
    NaN




  • majotecitamajotecita MemberPosts:10Contributor II
    Please Help me!!!!!

    I don't know what else to do!!!!
  • haddockhaddock MemberPosts:849Maven
    HI there,

    Youreallyneed to work through help->RapidMIner Tutorial , then the error messages will mean something to you.
    WARNING: LinearRegression: The number of regular attributes of the given example set does not fit the number of attributes of the training example set, training: 0, application: 21
    It is saying that your model is built out of nothing! So you should look at the process that produced C:\Users\Kote\Documents\Universidad\MBE\Proyecto de Tesis\Prediccion Le\RapidMiner\Modelos\RL CG MENSUAL.mod .

    But really, tutorial time will not be wasted!
  • majotecitamajotecita MemberPosts:10Contributor II
    ok... i'll do it.

    但是你能告诉我,为什么这个日志出现s only when i'm triying to execute RapidMiner trough a Java Application??, because when I execute the process directly in RapidMiner there is no problem log... =S

    Thanks!
Sign InorRegisterto comment.