Create model with R that have a validation

voxsimvoxsim MemberPosts:2Contributor I
edited July 2019 inHelp
Is there any way to create a model with extension of R?

I have to do a validation with Split-Validation, i read the code of some existing R classifier, but when I try to validate them as shown in the video tutorials, they don't return a valid object Model.

Tagged:

Answers

  • voxsimvoxsim MemberPosts:2Contributor I
    I merged decisiontree and execute scripts

    package com.rapidminer.operator.r;

    import java.net.URL;
    import java.util.List;

    import org.rosuda.REngine.REXP;
    import org.rosuda.REngine.REXPMismatchException;
    import org.rosuda.REngine.RList;

    进口com.rapidminer.example.Attribute;
    进口com.rapidminer.example.ExampleSet;
    进口com.rapidminer.example.Statistics;
    进口com.rapidminer.example.set.SplittedExampleSet;
    进口com.rapidminer.operator.IOObject;
    进口com.rapidminer.operator.Model;
    进口com.rapidminer.operator.OperatorCapability;
    进口com.rapidminer.operator.OperatorDescription;
    进口com.rapidminer.operator.OperatorException;
    进口com.rapidminer.operator.UserError;
    进口com.rapidminer.parameter.ParameterType;
    进口com.rapidminer.parameter.ParameterTypeString;
    进口com.rapidminer.parameter.ParameterTypeText;
    进口com.rapidminer.parameter.TextType;
    进口com.rapidminer.tools.r.RPlotPainter;
    进口com.rapidminer.tools.r.RSession;
    进口com.rapidminer.tools.r.RSessionListener;
    进口com.rapidminer.tools.r.RSessionManager;
    进口com.rapidminer.tools.r.translation.RTranslations;
    进口com.rapidminer.tools.r.translation.RTranslator;
    进口com.rapidminer.operator.learner.AbstractLearner;
    进口com.rapidminer.operator.learner.PredictionModel;
    进口com.rapidminer.operator.learner.tree.GreaterSplitCondition;
    进口com.rapidminer.operator.learner.tree.LessEqualsSplitCondition;
    进口com.rapidminer.operator.learner.tree.NominalSplitCondition;
    进口com.rapidminer.operator.learner.tree.SplitCondition;
    进口com.rapidminer.operator.learner.tree.Tree;
    进口com.rapidminer.operator.learner.tree.TreeModel;

    public class RDecisionTreeLearner extends AbstractLearner implements RSessionListener {
    public static final String PARAMETER_R_SCRIPT = "script";
    public static final String PARAMETER_INPUT = "input";
    public static final String PARAMETER_VARIABLE_NAME = "name_of_variable";

    private transient boolean isErrorOccurred = false;
    private transient String errorOccured;

    public RDecisionTreeLearner(OperatorDescription description) {
    super(description);
    }

    @Override
    public Class getModelClass() {
    return TreeModel.class;
    }

    public List getParameterTypes() {
    List types = super.getParameterTypes();

    ParameterType type = new ParameterTypeText(PARAMETER_R_SCRIPT, "This script will be executed on one of the available R servers.", TextType.PLAIN, true);
    type.setExpert(false);
    types.add(type);
    type = new ParameterTypeString(PARAMETER_INPUT, "This assigns each input port a variable name. If the type of input object is supported by the R translation, it will be accessible under this variable name.");
    type.setExpert(false);
    types.add(type);

    return types;
    }

    public void changeTreeToLeaf(Tree node, ExampleSet exampleSet) {
    Attribute label = exampleSet.getAttributes().getLabel();
    exampleSet.recalculateAttributeStatistics(label);
    int labelValue = (int)exampleSet.getStatistics(label, Statistics.MODE);

    if(labelValue != -1) {
    String labelName = label.getMapping().mapIndex(labelValue);
    node.setLeaf(labelName);
    for (String value : label.getMapping().getValues()) {
    int count = (int)exampleSet.getStatistics(label, Statistics.COUNT, value);
    node.addCount(value, count);
    }
    }
    }

    public Tree getChilds(Tree current, Attribute bestAttribute, ExampleSet exampleSet, REXP payload, int depth) throws REXPMismatchException {
    int i = 0;
    int j = -1;
    SplittedExampleSet splitted = null;

    if(payload.isString()) {
    String[] names = payload._attr().asList().at(0).asStrings();
    String[] values = payload.asStrings();
    while (i < names.length) {
    String name = names;
    String value = values;

    if (name!=null && value!=null) {
    SplitCondition condition = null;

    if (bestAttribute.isNominal()) {
    condition = new NominalSplitCondition(bestAttribute, value);
    splitted = SplittedExampleSet.splitByAttribute(exampleSet, bestAttribute);
    j += 1;
    } else {
    double bestSplitValue = Double.valueOf(name.substring(2)).doubleValue();
    如果(i = = 0) {
    condition = new LessEqualsSplitCondition(bestAttribute, bestSplitValue);
    splitted = SplittedExampleSet.splitByAttribute(exampleSet, bestAttribute, bestSplitValue);
    j = 0;
    } else {
    condition = new GreaterSplitCondition(bestAttribute, bestSplitValue);
    j = 1;
    }
    }

    splitted.selectSingleSubset(j);
    ExampleSet eSet = (ExampleSet)splitted.clone();
    Tree child = new Tree(eSet);
    child.setLeaf(value);
    changeTreeToLeaf(child, eSet);
    current.addChild(child, condition);
    }
    i++;
    }
    return current;
    }

    if(payload.isList()) {
    RList rList = payload.asList();
    while (i < payload.length()) {
    String name = rList.keyAt(i);
    if (name!=null) {
    SplitCondition condition = null;

    if (bestAttribute.isNominal()) {
    condition = new NominalSplitCondition(bestAttribute, name);
    splitted = SplittedExampleSet.splitByAttribute(exampleSet, bestAttribute);
    j += 1;
    } else {
    double bestSplitValue = Double.valueOf(name.substring(2)).doubleValue();
    如果(i = = 0) {
    condition = new LessEqualsSplitCondition(bestAttribute, bestSplitValue);
    splitted = SplittedExampleSet.splitByAttribute(exampleSet, bestAttribute, bestSplitValue);
    j = 0;
    } else {
    condition = new GreaterSplitCondition(bestAttribute, bestSplitValue);
    j = 1;
    }
    }

    splitted.selectSingleSubset(j);
    Tree child = buildTreeFromR((ExampleSet)splitted.clone(), rList.at(i), depth);
    current.addChild(child, condition);
    }
    i++;
    }
    return current;
    }

    return current;
    }

    // Pari un nodo, dispari un arco
    public Tree buildTreeFromR(ExampleSet exampleSet, REXP payload, int depth) throws REXPMismatchException {
    Tree current = null;

    if(payload.isString() && payload.length() == 1) {
    String name = payload.asString();
    current = new Tree((ExampleSet) exampleSet.clone());
    current.setLeaf(name);
    changeTreeToLeaf(current, exampleSet);
    return current;
    }

    int i = 0;
    if(payload.isList()) {
    RList rList = payload.asList();
    while (i < payload.length()) {
    String name = rList.keyAt(i);
    if (name!=null) {
    current = new Tree((ExampleSet) exampleSet.clone());
    current.setLeaf(name);

    Attribute bestAttribute = exampleSet.getAttributes().get(name);
    current = getChilds(current, bestAttribute, exampleSet, rList.at(i), depth+1);
    }
    i++;
    }
    return current;
    }

    return current;
    }

    public Tree translateRTreeToTree(ExampleSet exampleSet) throws OperatorException {
    isErrorOccurred = false;
    errorOccured = null;

    Tree root = new Tree((ExampleSet)exampleSet.clone());
    root.setLeaf("Errore");
    /*Attribute label = exampleSet.getAttributes().get("TargetRelativo");
    exampleSet.getAttributes().setLabel(label);*/

    // try retrieving the connection
    RSession rSession = null;
    rSession = RSessionManager.acquireSession();
    rSession.registerSessionListener(this);

    try {
    / / R RapidMiner输入可用
    String inputVariableName = getParameterAsString(PARAMETER_INPUT);
    RTranslator translator = RTranslations.getTranslators(ExampleSet.class);
    if (translator != null) {
    translator.exportObject(rSession, inputVariableName, (IOObject) exampleSet);
    } else {
    throw new UserError(this, "r.no_translator_available", ExampleSet.class.getSimpleName());
    }

    if (isParameterSet(PARAMETER_R_SCRIPT))
    rSession.execute(getParameterAsString(PARAMETER_R_SCRIPT));
    // checking for errors during execution occurred on log
    if (isErrorOccurred)
    throw new UserError(this, new Throwable(errorOccured), "r.r_error");

    REXP payload = rSession.eval("result");
    root = buildTreeFromR(exampleSet, payload, 0);
    } catch (REXPMismatchException e) {
    e.printStackTrace();
    } finally {
    RSessionManager.releaseSession(rSession);
    }

    return root;
    }

    @Override
    public Model learn(ExampleSet exampleSet) throws OperatorException {
    // learn tree
    Tree root = translateRTreeToTree(exampleSet);
    // create and return model
    return new TreeModel(exampleSet, root);
    }

    @Override
    public boolean supportsCapability(OperatorCapability capability) {
    switch (capability) {
    case BINOMINAL_ATTRIBUTES:
    case POLYNOMINAL_ATTRIBUTES:
    case NUMERICAL_ATTRIBUTES:
    case POLYNOMINAL_LABEL:
    case BINOMINAL_LABEL:
    case WEIGHTED_EXAMPLES:
    case MISSING_VALUES:
    return true;
    default:
    return false;
    }
    }

    @Override
    public void informErrors(String[] errors) {
    StringBuilder builder = new StringBuilder();
    for (String error : errors) {
    isErrorOccurred = true;
    builder.append(error);
    logError(error);
    }
    errorOccured = builder.toString();
    }

    @Override
    public void informWarnings(String[] warnings) {
    for (String warning : warnings)
    logWarning(warning);
    }

    @Override
    public void informOutput(String[] text) {
    for (String warning : text)
    logNote(warning);
    }
    /* Ignore following events */
    @Override
    public void informAssignment(RSession session) {
    }

    @Override
    public void informEvaluation(RSession session) {
    }

    @Override
    public void informExecution(RSession session) {
    }

    @Override
    public void informInterpretation(RSession session) {
    }

    @Override
    public void notifyPlotListener(RPlotPainter plotPainter) {
    }

    @Override
    public void informHelpChange(URL helpPage) {
    }
    }
    This run well .. i put the result in a variable called result. The script in R is an implementation of C4.5 and the result is an associative array.

    Simon
Sign InorRegisterto comment.