"Evaluating Anomaly detection methods"
Hi,
I am trying to evaluate anomaly detection methods. I want to do this using ROC and F-measure. I am not sure how to do this. i have attached the xml of the process.
i would appreciate any assistance on this as I am still learning Rapidminer.
Thanks
I am trying to evaluate anomaly detection methods. I want to do this using ROC and F-measure. I am not sure how to do this. i have attached the xml of the process.
i would appreciate any assistance on this as I am still learning Rapidminer.
Thanks
<运营商激活= =“false”类"anomalydetection:Local Correlation Integeral (LOCI)" compatibility="2.1.002" expanded="true" height="76" name="Local Correlation Integeral (LOCI)" width="90" x="179" y="390"/>
<操作符= " true " class = " select_attribute激活s" compatibility="5.3.015" expanded="true" height="76" name="Select Attributes (2)" width="90" x="581" y="30">
<操作符= " true " class = " select_attribute激活s" compatibility="5.3.015" expanded="true" height="76" name="Select Attributes (3)" width="90" x="581" y="210">
<运营商激活= =“false”类"compare_rocs" compatibility="5.3.015" expanded="true" height="76" name="Compare ROCs" width="90" x="899" y="435">
<运营商激活= =“false”类"generate_attributes" compatibility="5.3.015" expanded="true" height="76" name="Generate Attributes (4)" width="90" x="313" y="390">
<运营商激活= =“false”类"set_role" compatibility="5.3.015" expanded="true" height="76" name="Set Role (3)" width="90" x="447" y="390">
<运营商激活= =“false”类"select_attributes" compatibility="5.3.015" expanded="true" height="76" name="Select Attributes (4)" width="90" x="581" y="390">
<运营商激活= =“false”类"anomalydetection:Generate ROC" compatibility="2.1.002" expanded="true" height="130" name="Generate ROC (3)" width="90" x="715" y="390">
<操作符= " true " class = " select_attribute激活s" compatibility="5.3.015" expanded="true" height="76" name="Select Attributes (5)" width="90" x="581" y="570">
<连接from_op = from_po“生成属性(2)”rt="example set output" to_op="Set Role" to_port="example set input"/>
[\code]
Tagged:
0
Answers
label attribute "Outlier_Label". I added a macro "threshold" to handle this more comfortable
(lowering it to "1"):