Am I building my Deep Learning model right?

jakob_roetnerjakob_roetner MemberPosts:2Contributor I
edited December 2018 inHelp

I'm building a Deep Learning model in Rapidminer right now and I have some basic knowledge in Machine Learning, but I'm sometimes a bit confused how to implement my ideas in Rapidminer.

The basic idea is this:

  • I have a dataset which I cluster with an HMM before the training in Rapidminer - The goal is to use the data from one state ("E1") to train my Deep Learning model and afterwards predict some Label ("TRUE"/"FALSE") in the rest of the dataset (so in principal every state, except E1)
  • Plus, I have a class imbalance in my data, I have way more "FALSE" labels than "TRUE" ones

My way of implementing this problem in Rapidminer is this:

  • I retrieve the two datasets and create weights for the different labels (TRUE gets assigned a weight of 10, FALSE gets assigned a weight of 1) for dealing with the class imbalance. Afterwards I sample 50% of the training set, and run it through a Deep Learning classifier including a Leave-One-Out Cross-Validation
  • Afterwards I apply this model to the Test set and predict the Performance (Binomial, because it's a binomial label)

I appended the two input files (anonymized in a way, that I can post them here and they're still enough for training/testing) and my Process as an XML-file.

My question now is, if there are any pitfalls or any basic things I'm overlooking? I'm still quite a beginner in the Machine Learning department and a complete beginner in Rapidminer. I'm just not sure if my way is scientificly correct, or if it could be better implemented in Rapidminer.

Best regards and thanks for your help:)

Jakob


<有限公司ntext>








<参数键= " notification_email“价值= " / >




























<操作符= " true " class = " numerical_to_bin激活ominal" compatibility="7.5.003" expanded="true" height="82" name="Numerical to Binominal (2)" width="90" x="514" y="187">






















































<操作符= " true " class = " numerical_to_bin激活ominal" compatibility="7.5.003" expanded="true" height="82" name="Numerical to Binominal" width="90" x="581" y="34">























<有限公司nnect from_port="in 1" to_op="Numerical to Polynominal" to_port="example set input"/>
<有限公司nnect from_port="in 2" to_op="Generate Attributes (2)" to_port="example set input"/>
<有限公司nnect from_op="Generate Attributes (2)" from_port="example set output" to_op="Generate Attributes (5)" to_port="example set input"/>
<有限公司nnect from_op="Generate Attributes (5)" from_port="example set output" to_op="Set Role (3)" to_port="example set input"/>
<有限公司nnect from_op="Set Role (3)" from_port="example set output" to_op="Numerical to Binominal (2)" to_port="example set input"/>
<有限公司nnect from_op="Numerical to Binominal (2)" from_port="example set output" to_op="Sample (3)" to_port="example set input"/>
<有限公司nnect from_op="Sample (3)" from_port="example set output" to_port="out 2"/>
<有限公司nnect from_op="Numerical to Polynominal" from_port="example set output" to_op="Generate Attributes (3)" to_port="example set input"/>
<有限公司nnect from_op="Generate Attributes (3)" from_port="example set output" to_op="Generate Attributes (4)" to_port="example set input"/>
<有限公司nnect from_op="Generate Attributes (4)" from_port="example set output" to_op="Set Role (2)" to_port="example set input"/>
<有限公司nnect from_op="Set Role (2)" from_port="example set output" to_op="Numerical to Binominal" to_port="example set input"/>
<有限公司nnect from_op="Numerical to Binominal" from_port="example set output" to_op="Sample (2)" to_port="example set input"/>
<有限公司nnect from_op="Sample (2)" from_port="example set output" to_port="out 1"/>




































<参数键= " learning_rate " value = " 0.005 " / >


<参数键= "mentum_start" value="0.0"/>
<参数键= "mentum_ramp" value="1000000.0"/>
<参数键= "mentum_stable" value="0.0"/>
















<有限公司nnect from_port="training set" to_op="Deep Learning" to_port="training set"/>
<有限公司nnect from_op="Deep Learning" from_port="model" to_port="model"/>




































<有限公司nnect from_port="model" to_op="Apply Model" to_port="model"/>
<有限公司nnect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/>
<有限公司nnect from_op="Apply Model" from_port="labelled data" to_op="Performance (2)" to_port="labelled data"/>
<有限公司nnect from_op="Performance (2)" from_port="performance" to_port="performance 1"/>
<有限公司nnect from_op="Performance (2)" from_port="example set" to_port="test set results"/>












<有限公司nnect from_op="Retrieve Vista_wo_E1" from_port="output" to_op="Set weight" to_port="in 2"/>
<有限公司nnect from_op="Retrieve Vista_E1" from_port="output" to_op="Set weight" to_port="in 1"/>
<有限公司nnect from_op="Set weight" from_port="out 1" to_op="Cross Validation" to_port="example set"/>
<有限公司nnect from_op="Set weight" from_port="out 2" to_op="Apply Model (2)" to_port="unlabelled data"/>
<有限公司nnect from_op="Cross Validation" from_port="model" to_op="Apply Model (2)" to_port="model"/>
<有限公司nnect from_op="Apply Model (2)" from_port="labelled data" to_port="result 1"/>





Answers

  • sgenzersgenzer Administrator, Moderator, Employee, RapidMiner Certified Analyst, Community Manager, Member, University Professor, PM ModeratorPosts:2,959Community Manager

    hello@jakob_roetner- I'm going to pass this on to others in the team who know the DL operators better than I. Maybe@jpuente?

  • jakob_roetnerjakob_roetner MemberPosts:2Contributor I

    Thank you very much for your effort:)Highly appreciated!

Sign InorRegisterto comment.