Compare predicted results from deep learning to actual in the validation set

bsegalbsegal Member, University ProfessorPosts:7University Professor
edited December 2018 inHelp

I am a beginner so I apologize in advance if this is obvious, but the online chat folks suggested I post here!

I am trying to train a deep neural network to make a binary prediction ("hard" vs "easy") based on a bunch of real number parameters and a couple of nominal parameters. I input the data from excel for the labelled training set and put a set role block to indicate the "answer" called "class" as a label. Then I passed the data to the deep learning block. I took the trained model and used a apply model block, giving an unlabelled validation set of data as the input. Wired both outputs to the results on the far right. What I get is the assigned predictions in a new column ("Prediction(class)" where "class" was the label). What I need to do now is see how well it did by comparing the actual to the prediction. Because the validation set is unlabeled, it's not present in that excel. I have them of course, in the original data, but I had removed them to make the validation set unlabeled. So basically I want to evaluate the performance of the prediction.

My wiring and output data are appended.

Thanks so much!

Best Answer

  • bsegalbsegal Member, University ProfessorPosts:7University Professor
    Solution Accepted

    OK thanks, i will run these for now. We do have a bunch more data, though it's not "enriched" in difficult (vs easy) cases like these original sets, which were derived after the fact to yield exactly 50/50. The new data set is prospective and has only ~10% difficult but does have several hundred rows and growing. I'll likely be back for help with the DL!

Answers

  • sgenzersgenzer Administrator, Moderator, Employee, RapidMiner Certified Analyst, Community Manager, Member, University Professor, PM ModeratorPosts:2,959Community Manager

    hello@bsegalwelcome to the community! I'd recommend posting your XML process here (see "Read Before Posting" on right when you reply) and attach your dataset. This way we can replicate what you're doing and help you better.

    Scott

  • bsegalbsegal Member, University ProfessorPosts:7University Professor

    Thanks. Enclosed is the xml and the excel file with the data. The labelled training set is tab 2, and the unlabelled validation set is tab 3. All of the data together is on tab 1.







    <运营商激活= " true " class = "过程" compatibility="8.0.001" expanded="true" name="Process">
    <帕拉meter key="logverbosity" value="init"/>
    <帕拉meter key="random_seed" value="2001"/>
    <帕拉meter key="send_mail" value="never"/>
    <帕拉meter key="notification_email" value=""/>
    <帕拉meter key="process_duration_for_mail" value="30"/>
    <帕拉meter key="encoding" value="SYSTEM"/>
    < process expanded="true">

    <帕拉meter key="excel_file" value="/Users/scottsegalmd/Documents/AW computer study/Deep learning/openface embeds with demographics.xlsx"/>
    <帕拉meter key="sheet_number" value="3"/>
    <帕拉meter key="imported_cell_range" value="A1:ED41"/>
    <帕拉meter key="encoding" value="SYSTEM"/>
    <帕拉meter key="first_row_as_names" value="false"/>

    <帕拉meter key="0" value="Name"/>

    <帕拉meter key="date_format" value=""/>
    <帕拉meter key="time_zone" value="SYSTEM"/>
    <帕拉meter key="locale" value="English (United States)"/>

    <帕拉meter key="0" value="Embed 1.true.real.attribute"/>
    <帕拉meter key="1" value="Embed 2.true.real.attribute"/>
    <帕拉meter key="2" value="Embed 3.true.real.attribute"/>
    <帕拉meter key="3" value="Embed 4.true.real.attribute"/>
    <帕拉meter key="4" value="Embed 5.true.real.attribute"/>
    <帕拉meter key="5" value="Embed 6.true.real.attribute"/>
    <帕拉meter key="6" value="Embed 7.true.real.attribute"/>
    <帕拉meter key="7" value="Embed 8.true.real.attribute"/>
    <帕拉meter key="8" value="Embed 9.true.real.attribute"/>
    <帕拉meter key="9" value="Embed 10.true.real.attribute"/>
    <帕拉meter key="10" value="Embed 11.true.real.attribute"/>
    <帕拉meter key="11" value="Embed 12.true.real.attribute"/>
    <帕拉meter key="12" value="Embed 13.true.real.attribute"/>
    <帕拉meter key="13" value="Embed 14.true.real.attribute"/>
    <帕拉meter key="14" value="Embed 15.true.real.attribute"/>
    <帕拉meter key="15" value="Embed 16.true.real.attribute"/>
    <帕拉meter key="16" value="Embed 17.true.real.attribute"/>
    <帕拉meter key="17" value="Embed 18.true.real.attribute"/>
    <帕拉meter key="18" value="Embed 19.true.real.attribute"/>
    <帕拉meter key="19" value="Embed 20.true.real.attribute"/>
    <帕拉meter key="20" value="Embed 21.true.real.attribute"/>
    <帕拉meter key="21" value="Embed 22.true.real.attribute"/>
    <帕拉meter key="22" value="Embed 23.true.real.attribute"/>
    <帕拉meter key="23" value="Embed 24.true.real.attribute"/>
    <帕拉meter key="24" value="Embed 25.true.real.attribute"/>
    <帕拉meter key="25" value="Embed 26.true.real.attribute"/>
    <帕拉meter key="26" value="Embed 27.true.real.attribute"/>
    <帕拉meter key="27" value="Embed 28.true.real.attribute"/>
    <帕拉meter key="28" value="Embed 29.true.real.attribute"/>
    <帕拉meter key="29" value="Embed 30.true.real.attribute"/>
    <帕拉meter key="30" value="Embed 31.true.real.attribute"/>
    <帕拉meter key="31" value="Embed 32.true.real.attribute"/>
    <帕拉meter key="32" value="Embed 33.true.real.attribute"/>
    <帕拉meter key="33" value="Embed 34.true.real.attribute"/>
    <帕拉meter key="34" value="Embed 35.true.real.attribute"/>
    <帕拉meter key="35" value="Embed 36.true.real.attribute"/>
    <帕拉meter key="36" value="Embed 37.true.real.attribute"/>
    <帕拉meter key="37" value="Embed 38.true.real.attribute"/>
    <帕拉meter key="38" value="Embed 39.true.real.attribute"/>
    <帕拉meter key="39" value="Embed 40.true.real.attribute"/>
    <帕拉meter key="40" value="Embed 41.true.real.attribute"/>
    <帕拉meter key="41" value="Embed 42.true.real.attribute"/>
    <帕拉meter key="42" value="Embed 43.true.real.attribute"/>
    <帕拉meter key="43" value="Embed 44.true.real.attribute"/>
    <帕拉meter key="44" value="Embed 45.true.real.attribute"/>
    <帕拉meter key="45" value="Embed 46.true.real.attribute"/>
    <帕拉meter key="46" value="Embed 47.true.real.attribute"/>
    <帕拉meter key="47" value="Embed 48.true.real.attribute"/>
    <帕拉meter key="48" value="Embed 49.true.real.attribute"/>
    <帕拉meter key="49" value="Embed 50.true.real.attribute"/>
    <帕拉meter key="50" value="Embed 51.true.real.attribute"/>
    <帕拉meter key="51" value="Embed 52.true.real.attribute"/>
    <帕拉meter key="52" value="Embed 53.true.real.attribute"/>
    <帕拉meter key="53" value="Embed 54.true.real.attribute"/>
    <帕拉meter key="54" value="Embed 55.true.real.attribute"/>
    <帕拉meter key="55" value="Embed 56.true.real.attribute"/>
    <帕拉meter key="56" value="Embed 57.true.real.attribute"/>
    <帕拉meter key="57" value="Embed 58.true.real.attribute"/>
    <帕拉meter key="58" value="Embed 59.true.real.attribute"/>
    <帕拉meter key="59" value="Embed 60.true.real.attribute"/>
    <帕拉meter key="60" value="Embed 61.true.real.attribute"/>
    <帕拉meter key="61" value="Embed 62.true.real.attribute"/>
    <帕拉meter key="62" value="Embed 63.true.real.attribute"/>
    <帕拉meter key="63" value="Embed 64.true.real.attribute"/>
    <帕拉meter key="64" value="Embed 65.true.real.attribute"/>
    <帕拉meter key="65" value="Embed 66.true.real.attribute"/>
    <帕拉meter key="66" value="Embed 67.true.real.attribute"/>
    <帕拉meter key="67" value="Embed 68.true.real.attribute"/>
    <帕拉meter key="68" value="Embed 69.true.real.attribute"/>
    <帕拉meter key="69" value="Embed 70.true.real.attribute"/>
    <帕拉meter key="70" value="Embed 71.true.real.attribute"/>
    <帕拉meter key="71" value="Embed 72.true.real.attribute"/>
    <帕拉meter key="72" value="Embed 73.true.real.attribute"/>
    <帕拉meter key="73" value="Embed 74.true.real.attribute"/>
    <帕拉meter key="74" value="Embed 75.true.real.attribute"/>
    <帕拉meter key="75" value="Embed 76.true.real.attribute"/>
    <帕拉meter key="76" value="Embed 77.true.real.attribute"/>
    <帕拉meter key="77" value="Embed 78.true.real.attribute"/>
    <帕拉meter key="78" value="Embed 79.true.real.attribute"/>
    <帕拉meter key="79" value="Embed 80.true.real.attribute"/>
    <帕拉meter key="80" value="Embed 81.true.real.attribute"/>
    <帕拉meter key="81" value="Embed 82.true.real.attribute"/>
    <帕拉meter key="82" value="Embed 83.true.real.attribute"/>
    <帕拉meter key="83" value="Embed 84.true.real.attribute"/>
    <帕拉meter key="84" value="Embed 85.true.real.attribute"/>
    <帕拉meter key="85" value="Embed 86.true.real.attribute"/>
    <帕拉meter key="86" value="Embed 87.true.real.attribute"/>
    <帕拉meter key="87" value="Embed 88.true.real.attribute"/>
    <帕拉meter key="88" value="Embed 89.true.real.attribute"/>
    <帕拉meter key="89" value="Embed 90.true.real.attribute"/>
    <帕拉meter key="90" value="Embed 91.true.real.attribute"/>
    <帕拉meter key="91" value="Embed 92.true.real.attribute"/>
    <帕拉meter key="92" value="Embed 93.true.real.attribute"/>
    <帕拉meter key="93" value="Embed 94.true.real.attribute"/>
    <帕拉meter key="94" value="Embed 95.true.real.attribute"/>
    <帕拉meter key="95" value="Embed 96.true.real.attribute"/>
    <帕拉meter key="96" value="Embed 97.true.real.attribute"/>
    <帕拉meter key="97" value="Embed 98.true.real.attribute"/>
    <帕拉meter key="98" value="Embed 99.true.real.attribute"/>
    <帕拉meter key="99" value="Embed 100.true.real.attribute"/>
    <帕拉meter key="100" value="Embed 101.true.real.attribute"/>
    <帕拉meter key="101" value="Embed 102.true.real.attribute"/>
    <帕拉meter key="102" value="Embed 103.true.real.attribute"/>
    <帕拉meter key="103" value="Embed 104.true.real.attribute"/>
    <帕拉meter key="104" value="Embed 105.true.real.attribute"/>
    <帕拉meter key="105" value="Embed 106.true.real.attribute"/>
    <帕拉meter key="106" value="Embed 107.true.real.attribute"/>
    <帕拉meter key="107" value="Embed 108.true.real.attribute"/>
    <帕拉meter key="108" value="Embed 109.true.real.attribute"/>
    <帕拉meter key="109" value="Embed 110.true.real.attribute"/>
    <帕拉meter key="110" value="Embed 111.true.real.attribute"/>
    <帕拉meter key="111" value="Embed 112.true.real.attribute"/>
    <帕拉meter key="112" value="Embed 113.true.real.attribute"/>
    <帕拉meter key="113" value="Embed 114.true.real.attribute"/>
    <帕拉meter key="114" value="Embed 115.true.real.attribute"/>
    <帕拉meter key="115" value="Embed 116.true.real.attribute"/>
    <帕拉meter key="116" value="Embed 117.true.real.attribute"/>
    <帕拉meter key="117" value="Embed 118.true.real.attribute"/>
    <帕拉meter key="118" value="Embed 119.true.real.attribute"/>
    <帕拉meter key="119" value="Embed 120.true.real.attribute"/>
    <帕拉meter key="120" value="Embed 121.true.real.attribute"/>
    <帕拉meter key="121" value="Embed 122.true.real.attribute"/>
    <帕拉meter key="122" value="Embed 123.true.real.attribute"/>
    <帕拉meter key="123" value="Embed 124.true.real.attribute"/>
    <帕拉meter key="124" value="Embed 125.true.real.attribute"/>
    <帕拉meter key="125" value="Embed 126.true.real.attribute"/>
    <帕拉meter key="126" value="Embed 127.true.real.attribute"/>
    <帕拉meter key="127" value="Embed 128.true.real.attribute"/>
    <帕拉meter key="128" value="Age.true.integer.attribute"/>
    <帕拉meter key="129" value="Height.true.integer.attribute"/>
    <帕拉meter key="130" value="Weight.true.integer.attribute"/>
    <帕拉meter key="131" value="BMI.true.numeric.attribute"/>
    <帕拉meter key="132" value="MP.true.nominal.attribute"/>
    <帕拉meter key="133" value="TMD.true.numeric.attribute"/>

    <帕拉meter key="read_not_matching_values_as_missings" value="true"/>
    <帕拉meter key="datamanagement" value="double_array"/>
    <帕拉meter key="data_management" value="auto"/>


    <帕拉meter key="excel_file" value="/Users/scottsegalmd/Documents/AW computer study/Deep learning/openface embeds with demographics.xlsx"/>
    <帕拉meter key="sheet_number" value="2"/>
    <帕拉meter key="imported_cell_range" value="A1:EE41"/>
    <帕拉meter key="encoding" value="SYSTEM"/>
    <帕拉meter key="first_row_as_names" value="false"/>

    <帕拉meter key="0" value="Name"/>

    <帕拉meter key="date_format" value=""/>
    <帕拉meter key="time_zone" value="SYSTEM"/>
    <帕拉meter key="locale" value="English (United States)"/>

    <帕拉meter key="0" value="Embed 1.true.real.attribute"/>
    <帕拉meter key="1" value="Embed 2.true.real.attribute"/>
    <帕拉meter key="2" value="Embed 3.true.real.attribute"/>
    <帕拉meter key="3" value="Embed 4.true.real.attribute"/>
    <帕拉meter key="4" value="Embed 5.true.real.attribute"/>
    <帕拉meter key="5" value="Embed 6.true.real.attribute"/>
    <帕拉meter key="6" value="Embed 7.true.real.attribute"/>
    <帕拉meter key="7" value="Embed 8.true.real.attribute"/>
    <帕拉meter key="8" value="Embed 9.true.real.attribute"/>
    <帕拉meter key="9" value="Embed 10.true.real.attribute"/>
    <帕拉meter key="10" value="Embed 11.true.real.attribute"/>
    <帕拉meter key="11" value="Embed 12.true.real.attribute"/>
    <帕拉meter key="12" value="Embed 13.true.real.attribute"/>
    <帕拉meter key="13" value="Embed 14.true.real.attribute"/>
    <帕拉meter key="14" value="Embed 15.true.real.attribute"/>
    <帕拉meter key="15" value="Embed 16.true.real.attribute"/>
    <帕拉meter key="16" value="Embed 17.true.real.attribute"/>
    <帕拉meter key="17" value="Embed 18.true.real.attribute"/>
    <帕拉meter key="18" value="Embed 19.true.real.attribute"/>
    <帕拉meter key="19" value="Embed 20.true.real.attribute"/>
    <帕拉meter key="20" value="Embed 21.true.real.attribute"/>
    <帕拉meter key="21" value="Embed 22.true.real.attribute"/>
    <帕拉meter key="22" value="Embed 23.true.real.attribute"/>
    <帕拉meter key="23" value="Embed 24.true.real.attribute"/>
    <帕拉meter key="24" value="Embed 25.true.real.attribute"/>
    <帕拉meter key="25" value="Embed 26.true.real.attribute"/>
    <帕拉meter key="26" value="Embed 27.true.real.attribute"/>
    <帕拉meter key="27" value="Embed 28.true.real.attribute"/>
    <帕拉meter key="28" value="Embed 29.true.real.attribute"/>
    <帕拉meter key="29" value="Embed 30.true.real.attribute"/>
    <帕拉meter key="30" value="Embed 31.true.real.attribute"/>
    <帕拉meter key="31" value="Embed 32.true.real.attribute"/>
    <帕拉meter key="32" value="Embed 33.true.real.attribute"/>
    <帕拉meter key="33" value="Embed 34.true.real.attribute"/>
    <帕拉meter key="34" value="Embed 35.true.real.attribute"/>
    <帕拉meter key="35" value="Embed 36.true.real.attribute"/>
    <帕拉meter key="36" value="Embed 37.true.real.attribute"/>
    <帕拉meter key="37" value="Embed 38.true.real.attribute"/>
    <帕拉meter key="38" value="Embed 39.true.real.attribute"/>
    <帕拉meter key="39" value="Embed 40.true.real.attribute"/>
    <帕拉meter key="40" value="Embed 41.true.real.attribute"/>
    <帕拉meter key="41" value="Embed 42.true.real.attribute"/>
    <帕拉meter key="42" value="Embed 43.true.real.attribute"/>
    <帕拉meter key="43" value="Embed 44.true.real.attribute"/>
    <帕拉meter key="44" value="Embed 45.true.real.attribute"/>
    <帕拉meter key="45" value="Embed 46.true.real.attribute"/>
    <帕拉meter key="46" value="Embed 47.true.real.attribute"/>
    <帕拉meter key="47" value="Embed 48.true.real.attribute"/>
    <帕拉meter key="48" value="Embed 49.true.real.attribute"/>
    <帕拉meter key="49" value="Embed 50.true.real.attribute"/>
    <帕拉meter key="50" value="Embed 51.true.real.attribute"/>
    <帕拉meter key="51" value="Embed 52.true.real.attribute"/>
    <帕拉meter key="52" value="Embed 53.true.real.attribute"/>
    <帕拉meter key="53" value="Embed 54.true.real.attribute"/>
    <帕拉meter key="54" value="Embed 55.true.real.attribute"/>
    <帕拉meter key="55" value="Embed 56.true.real.attribute"/>
    <帕拉meter key="56" value="Embed 57.true.real.attribute"/>
    <帕拉meter key="57" value="Embed 58.true.real.attribute"/>
    <帕拉meter key="58" value="Embed 59.true.real.attribute"/>
    <帕拉meter key="59" value="Embed 60.true.real.attribute"/>
    <帕拉meter key="60" value="Embed 61.true.real.attribute"/>
    <帕拉meter key="61" value="Embed 62.true.real.attribute"/>
    <帕拉meter key="62" value="Embed 63.true.real.attribute"/>
    <帕拉meter key="63" value="Embed 64.true.real.attribute"/>
    <帕拉meter key="64" value="Embed 65.true.real.attribute"/>
    <帕拉meter key="65" value="Embed 66.true.real.attribute"/>
    <帕拉meter key="66" value="Embed 67.true.real.attribute"/>
    <帕拉meter key="67" value="Embed 68.true.real.attribute"/>
    <帕拉meter key="68" value="Embed 69.true.real.attribute"/>
    <帕拉meter key="69" value="Embed 70.true.real.attribute"/>
    <帕拉meter key="70" value="Embed 71.true.real.attribute"/>
    <帕拉meter key="71" value="Embed 72.true.real.attribute"/>
    <帕拉meter key="72" value="Embed 73.true.real.attribute"/>
    <帕拉meter key="73" value="Embed 74.true.real.attribute"/>
    <帕拉meter key="74" value="Embed 75.true.real.attribute"/>
    <帕拉meter key="75" value="Embed 76.true.real.attribute"/>
    <帕拉meter key="76" value="Embed 77.true.real.attribute"/>
    <帕拉meter key="77" value="Embed 78.true.real.attribute"/>
    <帕拉meter key="78" value="Embed 79.true.real.attribute"/>
    <帕拉meter key="79" value="Embed 80.true.real.attribute"/>
    <帕拉meter key="80" value="Embed 81.true.real.attribute"/>
    <帕拉meter key="81" value="Embed 82.true.real.attribute"/>
    <帕拉meter key="82" value="Embed 83.true.real.attribute"/>
    <帕拉meter key="83" value="Embed 84.true.real.attribute"/>
    <帕拉meter key="84" value="Embed 85.true.real.attribute"/>
    <帕拉meter key="85" value="Embed 86.true.real.attribute"/>
    <帕拉meter key="86" value="Embed 87.true.real.attribute"/>
    <帕拉meter key="87" value="Embed 88.true.real.attribute"/>
    <帕拉meter key="88" value="Embed 89.true.real.attribute"/>
    <帕拉meter key="89" value="Embed 90.true.real.attribute"/>
    <帕拉meter key="90" value="Embed 91.true.real.attribute"/>
    <帕拉meter key="91" value="Embed 92.true.real.attribute"/>
    <帕拉meter key="92" value="Embed 93.true.real.attribute"/>
    <帕拉meter key="93" value="Embed 94.true.real.attribute"/>
    <帕拉meter key="94" value="Embed 95.true.real.attribute"/>
    <帕拉meter key="95" value="Embed 96.true.real.attribute"/>
    <帕拉meter key="96" value="Embed 97.true.real.attribute"/>
    <帕拉meter key="97" value="Embed 98.true.real.attribute"/>
    <帕拉meter key="98" value="Embed 99.true.real.attribute"/>
    <帕拉meter key="99" value="Embed 100.true.real.attribute"/>
    <帕拉meter key="100" value="Embed 101.true.real.attribute"/>
    <帕拉meter key="101" value="Embed 102.true.real.attribute"/>
    <帕拉meter key="102" value="Embed 103.true.real.attribute"/>
    <帕拉meter key="103" value="Embed 104.true.real.attribute"/>
    <帕拉meter key="104" value="Embed 105.true.real.attribute"/>
    <帕拉meter key="105" value="Embed 106.true.real.attribute"/>
    <帕拉meter key="106" value="Embed 107.true.real.attribute"/>
    <帕拉meter key="107" value="Embed 108.true.real.attribute"/>
    <帕拉meter key="108" value="Embed 109.true.real.attribute"/>
    <帕拉meter key="109" value="Embed 110.true.real.attribute"/>
    <帕拉meter key="110" value="Embed 111.true.real.attribute"/>
    <帕拉meter key="111" value="Embed 112.true.real.attribute"/>
    <帕拉meter key="112" value="Embed 113.true.real.attribute"/>
    <帕拉meter key="113" value="Embed 114.true.real.attribute"/>
    <帕拉meter key="114" value="Embed 115.true.real.attribute"/>
    <帕拉meter key="115" value="Embed 116.true.real.attribute"/>
    <帕拉meter key="116" value="Embed 117.true.real.attribute"/>
    <帕拉meter key="117" value="Embed 118.true.real.attribute"/>
    <帕拉meter key="118" value="Embed 119.true.real.attribute"/>
    <帕拉meter key="119" value="Embed 120.true.real.attribute"/>
    <帕拉meter key="120" value="Embed 121.true.real.attribute"/>
    <帕拉meter key="121" value="Embed 122.true.real.attribute"/>
    <帕拉meter key="122" value="Embed 123.true.real.attribute"/>
    <帕拉meter key="123" value="Embed 124.true.real.attribute"/>
    <帕拉meter key="124" value="Embed 125.true.real.attribute"/>
    <帕拉meter key="125" value="Embed 126.true.real.attribute"/>
    <帕拉meter key="126" value="Embed 127.true.real.attribute"/>
    <帕拉meter key="127" value="Embed 128.true.real.attribute"/>
    <帕拉meter key="128" value="Class.true.nominal.attribute"/>
    <帕拉meter key="129" value="Age.true.integer.attribute"/>
    <帕拉meter key="130" value="Height.true.integer.attribute"/>
    <帕拉meter key="131" value="Weight.true.numeric.attribute"/>
    <帕拉meter key="132" value="BMI.true.real.attribute"/>
    <帕拉meter key="133" value="MP.true.nominal.attribute"/>
    <帕拉meter key="134" value="TMD.true.numeric.attribute"/>

    <帕拉meter key="read_not_matching_values_as_missings" value="true"/>
    <帕拉meter key="datamanagement" value="double_array"/>
    <帕拉meter key="data_management" value="auto"/>


    <帕拉meter key="attribute_name" value="Class"/>
    <帕拉meter key="target_role" value="label"/>



    <帕拉meter key="activation" value="Rectifier"/>

    <帕拉meter key="hidden_layer_sizes" value="50"/>
    <帕拉meter key="hidden_layer_sizes" value="50"/>


    <帕拉meter key="reproducible_(uses_1_thread)" value="false"/>
    <帕拉meter key="use_local_random_seed" value="false"/>
    <帕拉meter key="local_random_seed" value="1992"/>
    <帕拉meter key="epochs" value="10.0"/>
    <帕拉meter key="compute_variable_importances" value="false"/>
    <帕拉meter key="train_samples_per_iteration" value="-2"/>
    <帕拉meter key="adaptive_rate" value="true"/>
    <帕拉meter key="epsilon" value="1.0E-8"/>
    <帕拉meter key="rho" value="0.99"/>
    <帕拉meter key="learning_rate" value="0.005"/>
    <帕拉meter key="learning_rate_annealing" value="1.0E-6"/>
    <帕拉meter key="learning_rate_decay" value="1.0"/>
    <帕拉meter key="momentum_start" value="0.0"/>
    <帕拉meter key="momentum_ramp" value="1000000.0"/>
    <帕拉meter key="momentum_stable" value="0.0"/>
    <帕拉meter key="nesterov_accelerated_gradient" value="true"/>
    <帕拉meter key="standardize" value="true"/>
    <帕拉meter key="L1" value="1.0E-5"/>
    <帕拉meter key="L2" value="0.0"/>
    <帕拉meter key="max_w2" value="10.0"/>
    <帕拉meter key="loss_function" value="Automatic"/>
    <帕拉meter key="distribution_function" value="AUTO"/>
    <帕拉meter key="early_stopping" value="false"/>
    <帕拉meter key="stopping_rounds" value="1"/>
    <帕拉meter key="stopping_metric" value="AUTO"/>
    <帕拉meter key="stopping_tolerance" value="0.001"/>
    <帕拉meter key="missing_values_handling" value="MeanImputation"/>
    <帕拉meter key="max_runtime_seconds" value="0"/>





    <帕拉meter key="create_view" value="false"/>



    <连接from_op = "设置角色“from_port = "榜样output" to_op="Deep Learning" to_port="training set"/>



    < portSpacing port="source_input 1" spacing="0"/>
    < portSpacing port="sink_result 1" spacing="0"/>
    < portSpacing port="sink_result 2" spacing="0"/>
    < portSpacing port="sink_result 3" spacing="0"/>



  • sgenzersgenzer Administrator, Moderator, Employee, RapidMiner Certified Analyst, Community Manager, Member, University Professor, PM ModeratorPosts:2,959Community Manager

    hi@bsegal- ok I think I understand. So normally we prefer to use cross-validation when building our models to prevent overfitting. And then we measure the performance of the training model, and apply the trained model to the unlabeled data.







    <运营商激活= " true " class = "过程" compatibility="8.0.001" expanded="true" name="Process">
    < process expanded="true">

    <帕拉meter key="excel_file" value="/Users/GenzerConsulting/Desktop/openface embeds with demographics.xlsx"/>
    <帕拉meter key="sheet_number" value="3"/>
    <帕拉meter key="imported_cell_range" value="A1:ED41"/>
    <帕拉meter key="first_row_as_names" value="false"/>

    <帕拉meter key="0" value="Name"/>


    <帕拉meter key="0" value="Embed 1.true.real.attribute"/>
    <帕拉meter key="1" value="Embed 2.true.real.attribute"/>
    <帕拉meter key="2" value="Embed 3.true.real.attribute"/>
    <帕拉meter key="3" value="Embed 4.true.real.attribute"/>
    <帕拉meter key="4" value="Embed 5.true.real.attribute"/>
    <帕拉meter key="5" value="Embed 6.true.real.attribute"/>
    <帕拉meter key="6" value="Embed 7.true.real.attribute"/>
    <帕拉meter key="7" value="Embed 8.true.real.attribute"/>
    <帕拉meter key="8" value="Embed 9.true.real.attribute"/>
    <帕拉meter key="9" value="Embed 10.true.real.attribute"/>
    <帕拉meter key="10" value="Embed 11.true.real.attribute"/>
    <帕拉meter key="11" value="Embed 12.true.real.attribute"/>
    <帕拉meter key="12" value="Embed 13.true.real.attribute"/>
    <帕拉meter key="13" value="Embed 14.true.real.attribute"/>
    <帕拉meter key="14" value="Embed 15.true.real.attribute"/>
    <帕拉meter key="15" value="Embed 16.true.real.attribute"/>
    <帕拉meter key="16" value="Embed 17.true.real.attribute"/>
    <帕拉meter key="17" value="Embed 18.true.real.attribute"/>
    <帕拉meter key="18" value="Embed 19.true.real.attribute"/>
    <帕拉meter key="19" value="Embed 20.true.real.attribute"/>
    <帕拉meter key="20" value="Embed 21.true.real.attribute"/>
    <帕拉meter key="21" value="Embed 22.true.real.attribute"/>
    <帕拉meter key="22" value="Embed 23.true.real.attribute"/>
    <帕拉meter key="23" value="Embed 24.true.real.attribute"/>
    <帕拉meter key="24" value="Embed 25.true.real.attribute"/>
    <帕拉meter key="25" value="Embed 26.true.real.attribute"/>
    <帕拉meter key="26" value="Embed 27.true.real.attribute"/>
    <帕拉meter key="27" value="Embed 28.true.real.attribute"/>
    <帕拉meter key="28" value="Embed 29.true.real.attribute"/>
    <帕拉meter key="29" value="Embed 30.true.real.attribute"/>
    <帕拉meter key="30" value="Embed 31.true.real.attribute"/>
    <帕拉meter key="31" value="Embed 32.true.real.attribute"/>
    <帕拉meter key="32" value="Embed 33.true.real.attribute"/>
    <帕拉meter key="33" value="Embed 34.true.real.attribute"/>
    <帕拉meter key="34" value="Embed 35.true.real.attribute"/>
    <帕拉meter key="35" value="Embed 36.true.real.attribute"/>
    <帕拉meter key="36" value="Embed 37.true.real.attribute"/>
    <帕拉meter key="37" value="Embed 38.true.real.attribute"/>
    <帕拉meter key="38" value="Embed 39.true.real.attribute"/>
    <帕拉meter key="39" value="Embed 40.true.real.attribute"/>
    <帕拉meter key="40" value="Embed 41.true.real.attribute"/>
    <帕拉meter key="41" value="Embed 42.true.real.attribute"/>
    <帕拉meter key="42" value="Embed 43.true.real.attribute"/>
    <帕拉meter key="43" value="Embed 44.true.real.attribute"/>
    <帕拉meter key="44" value="Embed 45.true.real.attribute"/>
    <帕拉meter key="45" value="Embed 46.true.real.attribute"/>
    <帕拉meter key="46" value="Embed 47.true.real.attribute"/>
    <帕拉meter key="47" value="Embed 48.true.real.attribute"/>
    <帕拉meter key="48" value="Embed 49.true.real.attribute"/>
    <帕拉meter key="49" value="Embed 50.true.real.attribute"/>
    <帕拉meter key="50" value="Embed 51.true.real.attribute"/>
    <帕拉meter key="51" value="Embed 52.true.real.attribute"/>
    <帕拉meter key="52" value="Embed 53.true.real.attribute"/>
    <帕拉meter key="53" value="Embed 54.true.real.attribute"/>
    <帕拉meter key="54" value="Embed 55.true.real.attribute"/>
    <帕拉meter key="55" value="Embed 56.true.real.attribute"/>
    <帕拉meter key="56" value="Embed 57.true.real.attribute"/>
    <帕拉meter key="57" value="Embed 58.true.real.attribute"/>
    <帕拉meter key="58" value="Embed 59.true.real.attribute"/>
    <帕拉meter key="59" value="Embed 60.true.real.attribute"/>
    <帕拉meter key="60" value="Embed 61.true.real.attribute"/>
    <帕拉meter key="61" value="Embed 62.true.real.attribute"/>
    <帕拉meter key="62" value="Embed 63.true.real.attribute"/>
    <帕拉meter key="63" value="Embed 64.true.real.attribute"/>
    <帕拉meter key="64" value="Embed 65.true.real.attribute"/>
    <帕拉meter key="65" value="Embed 66.true.real.attribute"/>
    <帕拉meter key="66" value="Embed 67.true.real.attribute"/>
    <帕拉meter key="67" value="Embed 68.true.real.attribute"/>
    <帕拉meter key="68" value="Embed 69.true.real.attribute"/>
    <帕拉meter key="69" value="Embed 70.true.real.attribute"/>
    <帕拉meter key="70" value="Embed 71.true.real.attribute"/>
    <帕拉meter key="71" value="Embed 72.true.real.attribute"/>
    <帕拉meter key="72" value="Embed 73.true.real.attribute"/>
    <帕拉meter key="73" value="Embed 74.true.real.attribute"/>
    <帕拉meter key="74" value="Embed 75.true.real.attribute"/>
    <帕拉meter key="75" value="Embed 76.true.real.attribute"/>
    <帕拉meter key="76" value="Embed 77.true.real.attribute"/>
    <帕拉meter key="77" value="Embed 78.true.real.attribute"/>
    <帕拉meter key="78" value="Embed 79.true.real.attribute"/>
    <帕拉meter key="79" value="Embed 80.true.real.attribute"/>
    <帕拉meter key="80" value="Embed 81.true.real.attribute"/>
    <帕拉meter key="81" value="Embed 82.true.real.attribute"/>
    <帕拉meter key="82" value="Embed 83.true.real.attribute"/>
    <帕拉meter key="83" value="Embed 84.true.real.attribute"/>
    <帕拉meter key="84" value="Embed 85.true.real.attribute"/>
    <帕拉meter key="85" value="Embed 86.true.real.attribute"/>
    <帕拉meter key="86" value="Embed 87.true.real.attribute"/>
    <帕拉meter key="87" value="Embed 88.true.real.attribute"/>
    <帕拉meter key="88" value="Embed 89.true.real.attribute"/>
    <帕拉meter key="89" value="Embed 90.true.real.attribute"/>
    <帕拉meter key="90" value="Embed 91.true.real.attribute"/>
    <帕拉meter key="91" value="Embed 92.true.real.attribute"/>
    <帕拉meter key="92" value="Embed 93.true.real.attribute"/>
    <帕拉meter key="93" value="Embed 94.true.real.attribute"/>
    <帕拉meter key="94" value="Embed 95.true.real.attribute"/>
    <帕拉meter key="95" value="Embed 96.true.real.attribute"/>
    <帕拉meter key="96" value="Embed 97.true.real.attribute"/>
    <帕拉meter key="97" value="Embed 98.true.real.attribute"/>
    <帕拉meter key="98" value="Embed 99.true.real.attribute"/>
    <帕拉meter key="99" value="Embed 100.true.real.attribute"/>
    <帕拉meter key="100" value="Embed 101.true.real.attribute"/>
    <帕拉meter key="101" value="Embed 102.true.real.attribute"/>
    <帕拉meter key="102" value="Embed 103.true.real.attribute"/>
    <帕拉meter key="103" value="Embed 104.true.real.attribute"/>
    <帕拉meter key="104" value="Embed 105.true.real.attribute"/>
    <帕拉meter key="105" value="Embed 106.true.real.attribute"/>
    <帕拉meter key="106" value="Embed 107.true.real.attribute"/>
    <帕拉meter key="107" value="Embed 108.true.real.attribute"/>
    <帕拉meter key="108" value="Embed 109.true.real.attribute"/>
    <帕拉meter key="109" value="Embed 110.true.real.attribute"/>
    <帕拉meter key="110" value="Embed 111.true.real.attribute"/>
    <帕拉meter key="111" value="Embed 112.true.real.attribute"/>
    <帕拉meter key="112" value="Embed 113.true.real.attribute"/>
    <帕拉meter key="113" value="Embed 114.true.real.attribute"/>
    <帕拉meter key="114" value="Embed 115.true.real.attribute"/>
    <帕拉meter key="115" value="Embed 116.true.real.attribute"/>
    <帕拉meter key="116" value="Embed 117.true.real.attribute"/>
    <帕拉meter key="117" value="Embed 118.true.real.attribute"/>
    <帕拉meter key="118" value="Embed 119.true.real.attribute"/>
    <帕拉meter key="119" value="Embed 120.true.real.attribute"/>
    <帕拉meter key="120" value="Embed 121.true.real.attribute"/>
    <帕拉meter key="121" value="Embed 122.true.real.attribute"/>
    <帕拉meter key="122" value="Embed 123.true.real.attribute"/>
    <帕拉meter key="123" value="Embed 124.true.real.attribute"/>
    <帕拉meter key="124" value="Embed 125.true.real.attribute"/>
    <帕拉meter key="125" value="Embed 126.true.real.attribute"/>
    <帕拉meter key="126" value="Embed 127.true.real.attribute"/>
    <帕拉meter key="127" value="Embed 128.true.real.attribute"/>
    <帕拉meter key="128" value="Age.true.integer.attribute"/>
    <帕拉meter key="129" value="Height.true.integer.attribute"/>
    <帕拉meter key="130" value="Weight.true.integer.attribute"/>
    <帕拉meter key="131" value="BMI.true.numeric.attribute"/>
    <帕拉meter key="132" value="MP.true.nominal.attribute"/>
    <帕拉meter key="133" value="TMD.true.numeric.attribute"/>



    <帕拉meter key="excel_file" value="/Users/GenzerConsulting/Desktop/openface embeds with demographics.xlsx"/>
    <帕拉meter key="sheet_number" value="2"/>
    <帕拉meter key="imported_cell_range" value="A1:EE41"/>
    <帕拉meter key="first_row_as_names" value="false"/>

    <帕拉meter key="0" value="Name"/>


    <帕拉meter key="0" value="Embed 1.true.real.attribute"/>
    <帕拉meter key="1" value="Embed 2.true.real.attribute"/>
    <帕拉meter key="2" value="Embed 3.true.real.attribute"/>
    <帕拉meter key="3" value="Embed 4.true.real.attribute"/>
    <帕拉meter key="4" value="Embed 5.true.real.attribute"/>
    <帕拉meter key="5" value="Embed 6.true.real.attribute"/>
    <帕拉meter key="6" value="Embed 7.true.real.attribute"/>
    <帕拉meter key="7" value="Embed 8.true.real.attribute"/>
    <帕拉meter key="8" value="Embed 9.true.real.attribute"/>
    <帕拉meter key="9" value="Embed 10.true.real.attribute"/>
    <帕拉meter key="10" value="Embed 11.true.real.attribute"/>
    <帕拉meter key="11" value="Embed 12.true.real.attribute"/>
    <帕拉meter key="12" value="Embed 13.true.real.attribute"/>
    <帕拉meter key="13" value="Embed 14.true.real.attribute"/>
    <帕拉meter key="14" value="Embed 15.true.real.attribute"/>
    <帕拉meter key="15" value="Embed 16.true.real.attribute"/>
    <帕拉meter key="16" value="Embed 17.true.real.attribute"/>
    <帕拉meter key="17" value="Embed 18.true.real.attribute"/>
    <帕拉meter key="18" value="Embed 19.true.real.attribute"/>
    <帕拉meter key="19" value="Embed 20.true.real.attribute"/>
    <帕拉meter key="20" value="Embed 21.true.real.attribute"/>
    <帕拉meter key="21" value="Embed 22.true.real.attribute"/>
    <帕拉meter key="22" value="Embed 23.true.real.attribute"/>
    <帕拉meter key="23" value="Embed 24.true.real.attribute"/>
    <帕拉meter key="24" value="Embed 25.true.real.attribute"/>
    <帕拉meter key="25" value="Embed 26.true.real.attribute"/>
    <帕拉meter key="26" value="Embed 27.true.real.attribute"/>
    <帕拉meter key="27" value="Embed 28.true.real.attribute"/>
    <帕拉meter key="28" value="Embed 29.true.real.attribute"/>
    <帕拉meter key="29" value="Embed 30.true.real.attribute"/>
    <帕拉meter key="30" value="Embed 31.true.real.attribute"/>
    <帕拉meter key="31" value="Embed 32.true.real.attribute"/>
    <帕拉meter key="32" value="Embed 33.true.real.attribute"/>
    <帕拉meter key="33" value="Embed 34.true.real.attribute"/>
    <帕拉meter key="34" value="Embed 35.true.real.attribute"/>
    <帕拉meter key="35" value="Embed 36.true.real.attribute"/>
    <帕拉meter key="36" value="Embed 37.true.real.attribute"/>
    <帕拉meter key="37" value="Embed 38.true.real.attribute"/>
    <帕拉meter key="38" value="Embed 39.true.real.attribute"/>
    <帕拉meter key="39" value="Embed 40.true.real.attribute"/>
    <帕拉meter key="40" value="Embed 41.true.real.attribute"/>
    <帕拉meter key="41" value="Embed 42.true.real.attribute"/>
    <帕拉meter key="42" value="Embed 43.true.real.attribute"/>
    <帕拉meter key="43" value="Embed 44.true.real.attribute"/>
    <帕拉meter key="44" value="Embed 45.true.real.attribute"/>
    <帕拉meter key="45" value="Embed 46.true.real.attribute"/>
    <帕拉meter key="46" value="Embed 47.true.real.attribute"/>
    <帕拉meter key="47" value="Embed 48.true.real.attribute"/>
    <帕拉meter key="48" value="Embed 49.true.real.attribute"/>
    <帕拉meter key="49" value="Embed 50.true.real.attribute"/>
    <帕拉meter key="50" value="Embed 51.true.real.attribute"/>
    <帕拉meter key="51" value="Embed 52.true.real.attribute"/>
    <帕拉meter key="52" value="Embed 53.true.real.attribute"/>
    <帕拉meter key="53" value="Embed 54.true.real.attribute"/>
    <帕拉meter key="54" value="Embed 55.true.real.attribute"/>
    <帕拉meter key="55" value="Embed 56.true.real.attribute"/>
    <帕拉meter key="56" value="Embed 57.true.real.attribute"/>
    <帕拉meter key="57" value="Embed 58.true.real.attribute"/>
    <帕拉meter key="58" value="Embed 59.true.real.attribute"/>
    <帕拉meter key="59" value="Embed 60.true.real.attribute"/>
    <帕拉meter key="60" value="Embed 61.true.real.attribute"/>
    <帕拉meter key="61" value="Embed 62.true.real.attribute"/>
    <帕拉meter key="62" value="Embed 63.true.real.attribute"/>
    <帕拉meter key="63" value="Embed 64.true.real.attribute"/>
    <帕拉meter key="64" value="Embed 65.true.real.attribute"/>
    <帕拉meter key="65" value="Embed 66.true.real.attribute"/>
    <帕拉meter key="66" value="Embed 67.true.real.attribute"/>
    <帕拉meter key="67" value="Embed 68.true.real.attribute"/>
    <帕拉meter key="68" value="Embed 69.true.real.attribute"/>
    <帕拉meter key="69" value="Embed 70.true.real.attribute"/>
    <帕拉meter key="70" value="Embed 71.true.real.attribute"/>
    <帕拉meter key="71" value="Embed 72.true.real.attribute"/>
    <帕拉meter key="72" value="Embed 73.true.real.attribute"/>
    <帕拉meter key="73" value="Embed 74.true.real.attribute"/>
    <帕拉meter key="74" value="Embed 75.true.real.attribute"/>
    <帕拉meter key="75" value="Embed 76.true.real.attribute"/>
    <帕拉meter key="76" value="Embed 77.true.real.attribute"/>
    <帕拉meter key="77" value="Embed 78.true.real.attribute"/>
    <帕拉meter key="78" value="Embed 79.true.real.attribute"/>
    <帕拉meter key="79" value="Embed 80.true.real.attribute"/>
    <帕拉meter key="80" value="Embed 81.true.real.attribute"/>
    <帕拉meter key="81" value="Embed 82.true.real.attribute"/>
    <帕拉meter key="82" value="Embed 83.true.real.attribute"/>
    <帕拉meter key="83" value="Embed 84.true.real.attribute"/>
    <帕拉meter key="84" value="Embed 85.true.real.attribute"/>
    <帕拉meter key="85" value="Embed 86.true.real.attribute"/>
    <帕拉meter key="86" value="Embed 87.true.real.attribute"/>
    <帕拉meter key="87" value="Embed 88.true.real.attribute"/>
    <帕拉meter key="88" value="Embed 89.true.real.attribute"/>
    <帕拉meter key="89" value="Embed 90.true.real.attribute"/>
    <帕拉meter key="90" value="Embed 91.true.real.attribute"/>
    <帕拉meter key="91" value="Embed 92.true.real.attribute"/>
    <帕拉meter key="92" value="Embed 93.true.real.attribute"/>
    <帕拉meter key="93" value="Embed 94.true.real.attribute"/>
    <帕拉meter key="94" value="Embed 95.true.real.attribute"/>
    <帕拉meter key="95" value="Embed 96.true.real.attribute"/>
    <帕拉meter key="96" value="Embed 97.true.real.attribute"/>
    <帕拉meter key="97" value="Embed 98.true.real.attribute"/>
    <帕拉meter key="98" value="Embed 99.true.real.attribute"/>
    <帕拉meter key="99" value="Embed 100.true.real.attribute"/>
    <帕拉meter key="100" value="Embed 101.true.real.attribute"/>
    <帕拉meter key="101" value="Embed 102.true.real.attribute"/>
    <帕拉meter key="102" value="Embed 103.true.real.attribute"/>
    <帕拉meter key="103" value="Embed 104.true.real.attribute"/>
    <帕拉meter key="104" value="Embed 105.true.real.attribute"/>
    <帕拉meter key="105" value="Embed 106.true.real.attribute"/>
    <帕拉meter key="106" value="Embed 107.true.real.attribute"/>
    <帕拉meter key="107" value="Embed 108.true.real.attribute"/>
    <帕拉meter key="108" value="Embed 109.true.real.attribute"/>
    <帕拉meter key="109" value="Embed 110.true.real.attribute"/>
    <帕拉meter key="110" value="Embed 111.true.real.attribute"/>
    <帕拉meter key="111" value="Embed 112.true.real.attribute"/>
    <帕拉meter key="112" value="Embed 113.true.real.attribute"/>
    <帕拉meter key="113" value="Embed 114.true.real.attribute"/>
    <帕拉meter key="114" value="Embed 115.true.real.attribute"/>
    <帕拉meter key="115" value="Embed 116.true.real.attribute"/>
    <帕拉meter key="116" value="Embed 117.true.real.attribute"/>
    <帕拉meter key="117" value="Embed 118.true.real.attribute"/>
    <帕拉meter key="118" value="Embed 119.true.real.attribute"/>
    <帕拉meter key="119" value="Embed 120.true.real.attribute"/>
    <帕拉meter key="120" value="Embed 121.true.real.attribute"/>
    <帕拉meter key="121" value="Embed 122.true.real.attribute"/>
    <帕拉meter key="122" value="Embed 123.true.real.attribute"/>
    <帕拉meter key="123" value="Embed 124.true.real.attribute"/>
    <帕拉meter key="124" value="Embed 125.true.real.attribute"/>
    <帕拉meter key="125" value="Embed 126.true.real.attribute"/>
    <帕拉meter key="126" value="Embed 127.true.real.attribute"/>
    <帕拉meter key="127" value="Embed 128.true.real.attribute"/>
    <帕拉meter key="128" value="Class.true.nominal.attribute"/>
    <帕拉meter key="129" value="Age.true.integer.attribute"/>
    <帕拉meter key="130" value="Height.true.integer.attribute"/>
    <帕拉meter key="131" value="Weight.true.numeric.attribute"/>
    <帕拉meter key="132" value="BMI.true.real.attribute"/>
    <帕拉meter key="133" value="MP.true.nominal.attribute"/>
    <帕拉meter key="134" value="TMD.true.numeric.attribute"/>



    <帕拉meter key="attribute_name" value="Class"/>
    <帕拉meter key="target_role" value="label"/>



    < process expanded="true">


    <帕拉meter key="hidden_layer_sizes" value="50"/>
    <帕拉meter key="hidden_layer_sizes" value="50"/>







    < portSpacing port="source_training set" spacing="0"/>
    < portSpacing port="sink_model" spacing="0"/>
    < portSpacing port="sink_through 1" spacing="0"/>

    < process expanded="true">










    < portSpacing port="source_model" spacing="0"/>
    < portSpacing port="source_test set" spacing="0"/>
    < portSpacing port="source_through 1" spacing="0"/>
    < portSpacing port="sink_test set results" spacing="0"/>
    < portSpacing port="sink_performance 1" spacing="0"/>
    < portSpacing port="sink_performance 2" spacing="0"/>







    <连接from_op = "设置角色“from_port = "榜样output" to_op="Cross Validation" to_port="example set"/>



    < portSpacing port="source_input 1" spacing="0"/>
    < portSpacing port="sink_result 1" spacing="0"/>
    < portSpacing port="sink_result 2" spacing="0"/>
    < portSpacing port="sink_result 3" spacing="0"/>



    Scott

  • bsegalbsegal Member, University ProfessorPosts:7University Professor

    Thank you again. Sorry to persist, but i'm really trying to learn how to do this correctly. When I look at the results under Performance Vector, this appears to be how well it fit thetraining setin the cross validation step, rather than how it performed on the separatevalidation data(tab 3 in the excel file). What I am trying to do is train the model on a set of data, and then validate it (instead of an n-fold cross validation) on another set of data that was not used to train the model.

    背景如果这一点帮助:第一个128 columns are the output of an open source deep neural net that analyzes facial photographs and ouputs these embeddings. We are adding a few fields of data describing the subject which were part of a medical research study. The outcome is difficulty in performing a medical procedure known as endotracheal intubation. We're trying to predict difficulty based on facial appearance. So I'm hoping to train the model on a bunch of easy and hard cases, and then test the model on a different set of data.

  • sgenzersgenzer Administrator, Moderator, Employee, RapidMiner Certified Analyst, Community Manager, Member, University Professor, PM ModeratorPosts:2,959Community Manager

    hi@bsegal- no problem at all. Thanks for the background as it always helps to understand the use case. So the reason I'm not showing the performance of the validation set is exactly because it's unlabeled (hard/easy). How would we able to measure the performance of a model if we don't know with what we are comparing?

    So another way to skin this cat would be to split the training set (usually we use 80/20) and create a model with the larger piece (with cross-validation) and then test the performance with the remaining smaller piece. Then, once we're satisfied with the performance of the model, we can apply the model on unlabeled data to make informed, probabilistic predictions - the "validation set" tab in your case.

    Does this help at all?

    Scott

    [EDIT: on a side note, you have < 100 rows of data in your training set which is almost impossible to use to train any kind of decent model. Hopefully you have more data hiding somewhere?]

  • bsegalbsegal Member, University ProfessorPosts:7University Professor

    Scott, thanks for your patience. So yes, of course, we do have the actual results for the validation step. If you look at tab 1 of the excel file, I have all 80 cases, but I had manually stripped out the actual before sending it to the apply model block. We arbitrarily divided them in our original study into 40/40. In that study we used a supervised facial analysis model that required human intervention to jump start the fitting; here we are trying to skip the human intervention.

    So it sounds like you would not recommend what I'm doing (50/50 split of the cases, with one for training and one for testing) but rather combine all 80 cases and use a 10 fold cross validation step instead?

    But even with the risk of overfitting, is it possible to program RapidMiner to do what we were trying (the half and half split)?

  • sgenzersgenzer Administrator, Moderator, Employee, RapidMiner Certified Analyst, Community Manager, Member, University Professor, PM ModeratorPosts:2,959Community Manager

    ah ok! Silly me - should have looked at the first tab and read your query better. My apologies. Sometimes I jump before looking...

    So yes, my feeling is you're at risk of overfitting with so few data - particularly with an algorithm like Deep Learning which is prone to overfitting in general. I like the selection of DL as a model in general when looking at sets like yours due to its inherent feature selection properties, but I think you're using a tool that does not fit your current data resources. For initial data model selection, I always recommend using Ingo's amazing mod.www.turtlecreekpls.com. If I insert your information, I get Decision Tree and Naive Bayes as models that will most likely serve your purposes better.

    Here's what I would try:







    <运营商激活= " true " class = "过程" compatibility="8.0.001" expanded="true" name="Process">
    < process expanded="true">

    <帕拉meter key="excel_file" value="/Users/GenzerConsulting/Desktop/openface embeds with demographics.xlsx"/>
    <帕拉meter key="imported_cell_range" value="A1:EE81"/>
    <帕拉meter key="first_row_as_names" value="false"/>

    <帕拉meter key="0" value="Name"/>


    <帕拉meter key="0" value="MRN.true.integer.id"/>
    <帕拉meter key="1" value="1\.000.true.real.attribute"/>
    <帕拉meter key="2" value="2\.000.true.real.attribute"/>
    <帕拉meter key="3" value="3\.000.true.real.attribute"/>
    <帕拉meter key="4" value="4\.000.true.real.attribute"/>
    <帕拉meter key="5" value="5\.000.true.real.attribute"/>
    <帕拉meter key="6" value="6\.000.true.real.attribute"/>
    <帕拉meter key="7" value="7\.000.true.real.attribute"/>
    <帕拉meter key="8" value="8\.000.true.real.attribute"/>
    <帕拉meter key="9" value="9\.000.true.real.attribute"/>
    <帕拉meter key="10" value="10\.000.true.real.attribute"/>
    <帕拉meter key="11" value="11\.000.true.real.attribute"/>
    <帕拉meter key="12" value="12\.000.true.real.attribute"/>
    <帕拉meter key="13" value="13\.000.true.real.attribute"/>
    <帕拉meter key="14" value="14\.000.true.real.attribute"/>
    <帕拉meter key="15" value="15\.000.true.real.attribute"/>
    <帕拉meter key="16" value="16\.000.true.real.attribute"/>
    <帕拉meter key="17" value="17\.000.true.real.attribute"/>
    <帕拉meter key="18" value="18\.000.true.real.attribute"/>
    <帕拉meter key="19" value="19\.000.true.real.attribute"/>
    <帕拉meter key="20" value="20\.000.true.real.attribute"/>
    <帕拉meter key="21" value="21\.000.true.real.attribute"/>
    <帕拉meter key="22" value="22\.000.true.real.attribute"/>
    <帕拉meter key="23" value="23\.000.true.real.attribute"/>
    <帕拉meter key="24" value="24\.000.true.real.attribute"/>
    <帕拉meter key="25" value="25\.000.true.real.attribute"/>
    <帕拉meter key="26" value="26\.000.true.real.attribute"/>
    <帕拉meter key="27" value="27\.000.true.real.attribute"/>
    <帕拉meter key="28" value="28\.000.true.real.attribute"/>
    <参数键= " 29 " value = " 29 \ .000.true.real.attribute"/>
    <帕拉meter key="30" value="30\.000.true.real.attribute"/>
    <帕拉meter key="31" value="31\.000.true.real.attribute"/>
    <帕拉meter key="32" value="32\.000.true.real.attribute"/>
    <帕拉meter key="33" value="33\.000.true.real.attribute"/>
    <帕拉meter key="34" value="34\.000.true.real.attribute"/>
    <帕拉meter key="35" value="35\.000.true.real.attribute"/>
    <帕拉meter key="36" value="36\.000.true.real.attribute"/>
    <帕拉meter key="37" value="37\.000.true.real.attribute"/>
    <帕拉meter key="38" value="38\.000.true.real.attribute"/>
    <帕拉meter key="39" value="39\.000.true.real.attribute"/>
    <帕拉meter key="40" value="40\.000.true.real.attribute"/>
    <帕拉meter key="41" value="41\.000.true.real.attribute"/>
    <帕拉meter key="42" value="42\.000.true.real.attribute"/>
    <帕拉meter key="43" value="43\.000.true.real.attribute"/>
    <帕拉meter key="44" value="44\.000.true.real.attribute"/>
    <帕拉meter key="45" value="45\.000.true.real.attribute"/>
    <帕拉meter key="46" value="46\.000.true.real.attribute"/>
    <帕拉meter key="47" value="47\.000.true.real.attribute"/>
    <帕拉meter key="48" value="48\.000.true.real.attribute"/>
    <帕拉meter key="49" value="49\.000.true.real.attribute"/>
    <帕拉meter key="50" value="50\.000.true.real.attribute"/>
    <帕拉meter key="51" value="51\.000.true.real.attribute"/>
    <帕拉meter key="52" value="52\.000.true.real.attribute"/>
    <帕拉meter key="53" value="53\.000.true.real.attribute"/>
    <帕拉meter key="54" value="54\.000.true.real.attribute"/>
    <帕拉meter key="55" value="55\.000.true.real.attribute"/>
    <帕拉meter key="56" value="56\.000.true.real.attribute"/>
    <帕拉meter key="57" value="57\.000.true.real.attribute"/>
    <帕拉meter key="58" value="58\.000.true.real.attribute"/>
    <帕拉meter key="59" value="59\.000.true.real.attribute"/>
    <帕拉meter key="60" value="60\.000.true.real.attribute"/>
    <帕拉meter key="61" value="61\.000.true.real.attribute"/>
    <帕拉meter key="62" value="62\.000.true.real.attribute"/>
    <帕拉meter key="63" value="63\.000.true.real.attribute"/>
    <帕拉meter key="64" value="64\.000.true.real.attribute"/>
    <参数键= " 65 " value = " 65 \ .000.true.real.attribute"/>
    <帕拉meter key="66" value="66\.000.true.real.attribute"/>
    <帕拉meter key="67" value="67\.000.true.real.attribute"/>
    <帕拉meter key="68" value="68\.000.true.real.attribute"/>
    <帕拉meter key="69" value="69\.000.true.real.attribute"/>
    <帕拉meter key="70" value="70\.000.true.real.attribute"/>
    <帕拉meter key="71" value="71\.000.true.real.attribute"/>
    <帕拉meter key="72" value="72\.000.true.real.attribute"/>
    <帕拉meter key="73" value="73\.000.true.real.attribute"/>
    <帕拉meter key="74" value="74\.000.true.real.attribute"/>
    <帕拉meter key="75" value="75\.000.true.real.attribute"/>
    <帕拉meter key="76" value="76\.000.true.real.attribute"/>
    <帕拉meter key="77" value="77\.000.true.real.attribute"/>
    <帕拉meter key="78" value="78\.000.true.real.attribute"/>
    <帕拉meter key="79" value="79\.000.true.real.attribute"/>
    <帕拉meter key="80" value="80\.000.true.real.attribute"/>
    <帕拉meter key="81" value="81\.000.true.real.attribute"/>
    <帕拉meter key="82" value="82\.000.true.real.attribute"/>
    <帕拉meter key="83" value="83\.000.true.real.attribute"/>
    <帕拉meter key="84" value="84\.000.true.real.attribute"/>
    <帕拉meter key="85" value="85\.000.true.real.attribute"/>
    <帕拉meter key="86" value="86\.000.true.real.attribute"/>
    <帕拉meter key="87" value="87\.000.true.real.attribute"/>
    <帕拉meter key="88" value="88\.000.true.real.attribute"/>
    <帕拉meter key="89" value="89\.000.true.real.attribute"/>
    <帕拉meter key="90" value="90\.000.true.real.attribute"/>
    <帕拉meter key="91" value="91\.000.true.real.attribute"/>
    <帕拉meter key="92" value="92\.000.true.real.attribute"/>
    <帕拉meter key="93" value="93\.000.true.real.attribute"/>
    <帕拉meter key="94" value="94\.000.true.real.attribute"/>
    <帕拉meter key="95" value="95\.000.true.real.attribute"/>
    <帕拉meter key="96" value="96\.000.true.real.attribute"/>
    <帕拉meter key="97" value="97\.000.true.real.attribute"/>
    <帕拉meter key="98" value="98\.000.true.real.attribute"/>
    <帕拉meter key="99" value="99\.000.true.real.attribute"/>
    <帕拉meter key="100" value="100\.000.true.real.attribute"/>
    <帕拉meter key="101" value="101\.000.true.real.attribute"/>
    <帕拉meter key="102" value="102\.000.true.real.attribute"/>
    <帕拉meter key="103" value="103\.000.true.real.attribute"/>
    <帕拉meter key="104" value="104\.000.true.real.attribute"/>
    <帕拉meter key="105" value="105\.000.true.real.attribute"/>
    <帕拉meter key="106" value="106\.000.true.real.attribute"/>
    <帕拉meter key="107" value="107\.000.true.real.attribute"/>
    <帕拉meter key="108" value="108\.000.true.real.attribute"/>
    <帕拉meter key="109" value="109\.000.true.real.attribute"/>
    <帕拉meter key="110" value="110\.000.true.real.attribute"/>
    <帕拉meter key="111" value="111\.000.true.real.attribute"/>
    <帕拉meter key="112" value="112\.000.true.real.attribute"/>
    <帕拉meter key="113" value="113\.000.true.real.attribute"/>
    <帕拉meter key="114" value="114\.000.true.real.attribute"/>
    <帕拉meter key="115" value="115\.000.true.real.attribute"/>
    <帕拉meter key="116" value="116\.000.true.real.attribute"/>
    <帕拉meter key="117" value="117\.000.true.real.attribute"/>
    <帕拉meter key="118" value="118\.000.true.real.attribute"/>
    <帕拉meter key="119" value="119\.000.true.real.attribute"/>
    <帕拉meter key="120" value="120\.000.true.real.attribute"/>
    <帕拉meter key="121" value="121\.000.true.real.attribute"/>
    <帕拉meter key="122" value="122\.000.true.real.attribute"/>
    <帕拉meter key="123" value="123\.000.true.real.attribute"/>
    <帕拉meter key="124" value="124\.000.true.real.attribute"/>
    <帕拉meter key="125" value="125\.000.true.real.attribute"/>
    <帕拉meter key="126" value="126\.000.true.real.attribute"/>
    <帕拉meter key="127" value="127\.000.true.real.attribute"/>
    <帕拉meter key="128" value="128\.000.true.real.attribute"/>
    <帕拉meter key="129" value="Class.true.binominal.label"/>
    <帕拉meter key="130" value="Age.true.integer.attribute"/>
    <帕拉meter key="131" value="Height.true.integer.attribute"/>
    <帕拉meter key="132" value="Weight.true.numeric.attribute"/>
    <帕拉meter key="133" value="BMI.true.real.attribute"/>
    <帕拉meter key="134" value="MP.true.integer.attribute"/>




    <帕拉meter key="ratio" value="0.5"/>
    <帕拉meter key="ratio" value="0.5"/>



    < process expanded="true">



    < portSpacing port="source_training set" spacing="0"/>
    < portSpacing port="sink_model" spacing="0"/>
    < portSpacing port="sink_through 1" spacing="0"/>

    < process expanded="true">










    < portSpacing port="source_model" spacing="0"/>
    < portSpacing port="source_test set" spacing="0"/>
    < portSpacing port="source_through 1" spacing="0"/>
    < portSpacing port="sink_test set results" spacing="0"/>
    < portSpacing port="sink_performance 1" spacing="0"/>
    < portSpacing port="sink_performance 2" spacing="0"/>















    < portSpacing port="source_input 1" spacing="0"/>
    < portSpacing port="sink_result 1" spacing="0"/>
    < portSpacing port="sink_result 2" spacing="0"/>
    < portSpacing port="sink_result 3" spacing="0"/>



    Scott

  • sgenzersgenzer Administrator, Moderator, Employee, RapidMiner Certified Analyst, Community Manager, Member, University Professor, PM ModeratorPosts:2,959Community Manager

    EDIT - just to be clear, what I'm showing you is a process that you use once you have more data. With only your 80 rows, yes, you can try putting everything in 10-fold x-validation but again you're not going to get very good results. 49% accuracy with binary classes is worse than flipping a coin.







    <运营商激活= " true " class = "过程" compatibility="8.0.001" expanded="true" name="Process">
    < process expanded="true">

    <帕拉meter key="excel_file" value="/Users/GenzerConsulting/Desktop/openface embeds with demographics.xlsx"/>
    <帕拉meter key="imported_cell_range" value="A1:EE81"/>
    <帕拉meter key="first_row_as_names" value="false"/>

    <帕拉meter key="0" value="Name"/>


    <帕拉meter key="0" value="MRN.true.integer.id"/>
    <帕拉meter key="1" value="1\.000.true.real.attribute"/>
    <帕拉meter key="2" value="2\.000.true.real.attribute"/>
    <帕拉meter key="3" value="3\.000.true.real.attribute"/>
    <帕拉meter key="4" value="4\.000.true.real.attribute"/>
    <帕拉meter key="5" value="5\.000.true.real.attribute"/>
    <帕拉meter key="6" value="6\.000.true.real.attribute"/>
    <帕拉meter key="7" value="7\.000.true.real.attribute"/>
    <帕拉meter key="8" value="8\.000.true.real.attribute"/>
    <帕拉meter key="9" value="9\.000.true.real.attribute"/>
    <帕拉meter key="10" value="10\.000.true.real.attribute"/>
    <帕拉meter key="11" value="11\.000.true.real.attribute"/>
    <帕拉meter key="12" value="12\.000.true.real.attribute"/>
    <帕拉meter key="13" value="13\.000.true.real.attribute"/>
    <帕拉meter key="14" value="14\.000.true.real.attribute"/>
    <帕拉meter key="15" value="15\.000.true.real.attribute"/>
    <帕拉meter key="16" value="16\.000.true.real.attribute"/>
    <帕拉meter key="17" value="17\.000.true.real.attribute"/>
    <帕拉meter key="18" value="18\.000.true.real.attribute"/>
    <帕拉meter key="19" value="19\.000.true.real.attribute"/>
    <帕拉meter key="20" value="20\.000.true.real.attribute"/>
    <帕拉meter key="21" value="21\.000.true.real.attribute"/>
    <帕拉meter key="22" value="22\.000.true.real.attribute"/>
    <帕拉meter key="23" value="23\.000.true.real.attribute"/>
    <帕拉meter key="24" value="24\.000.true.real.attribute"/>
    <帕拉meter key="25" value="25\.000.true.real.attribute"/>
    <帕拉meter key="26" value="26\.000.true.real.attribute"/>
    <帕拉meter key="27" value="27\.000.true.real.attribute"/>
    <帕拉meter key="28" value="28\.000.true.real.attribute"/>
    <参数键= " 29 " value = " 29 \ .000.true.real.attribute"/>
    <帕拉meter key="30" value="30\.000.true.real.attribute"/>
    <帕拉meter key="31" value="31\.000.true.real.attribute"/>
    <帕拉meter key="32" value="32\.000.true.real.attribute"/>
    <帕拉meter key="33" value="33\.000.true.real.attribute"/>
    <帕拉meter key="34" value="34\.000.true.real.attribute"/>
    <帕拉meter key="35" value="35\.000.true.real.attribute"/>
    <帕拉meter key="36" value="36\.000.true.real.attribute"/>
    <帕拉meter key="37" value="37\.000.true.real.attribute"/>
    <帕拉meter key="38" value="38\.000.true.real.attribute"/>
    <帕拉meter key="39" value="39\.000.true.real.attribute"/>
    <帕拉meter key="40" value="40\.000.true.real.attribute"/>
    <帕拉meter key="41" value="41\.000.true.real.attribute"/>
    <帕拉meter key="42" value="42\.000.true.real.attribute"/>
    <帕拉meter key="43" value="43\.000.true.real.attribute"/>
    <帕拉meter key="44" value="44\.000.true.real.attribute"/>
    <帕拉meter key="45" value="45\.000.true.real.attribute"/>
    <帕拉meter key="46" value="46\.000.true.real.attribute"/>
    <帕拉meter key="47" value="47\.000.true.real.attribute"/>
    <帕拉meter key="48" value="48\.000.true.real.attribute"/>
    <帕拉meter key="49" value="49\.000.true.real.attribute"/>
    <帕拉meter key="50" value="50\.000.true.real.attribute"/>
    <帕拉meter key="51" value="51\.000.true.real.attribute"/>
    <帕拉meter key="52" value="52\.000.true.real.attribute"/>
    <帕拉meter key="53" value="53\.000.true.real.attribute"/>
    <帕拉meter key="54" value="54\.000.true.real.attribute"/>
    <帕拉meter key="55" value="55\.000.true.real.attribute"/>
    <帕拉meter key="56" value="56\.000.true.real.attribute"/>
    <帕拉meter key="57" value="57\.000.true.real.attribute"/>
    <帕拉meter key="58" value="58\.000.true.real.attribute"/>
    <帕拉meter key="59" value="59\.000.true.real.attribute"/>
    <帕拉meter key="60" value="60\.000.true.real.attribute"/>
    <帕拉meter key="61" value="61\.000.true.real.attribute"/>
    <帕拉meter key="62" value="62\.000.true.real.attribute"/>
    <帕拉meter key="63" value="63\.000.true.real.attribute"/>
    <帕拉meter key="64" value="64\.000.true.real.attribute"/>
    <参数键= " 65 " value = " 65 \ .000.true.real.attribute"/>
    <帕拉meter key="66" value="66\.000.true.real.attribute"/>
    <帕拉meter key="67" value="67\.000.true.real.attribute"/>
    <帕拉meter key="68" value="68\.000.true.real.attribute"/>
    <帕拉meter key="69" value="69\.000.true.real.attribute"/>
    <帕拉meter key="70" value="70\.000.true.real.attribute"/>
    <帕拉meter key="71" value="71\.000.true.real.attribute"/>
    <帕拉meter key="72" value="72\.000.true.real.attribute"/>
    <帕拉meter key="73" value="73\.000.true.real.attribute"/>
    <帕拉meter key="74" value="74\.000.true.real.attribute"/>
    <帕拉meter key="75" value="75\.000.true.real.attribute"/>
    <帕拉meter key="76" value="76\.000.true.real.attribute"/>
    <帕拉meter key="77" value="77\.000.true.real.attribute"/>
    <帕拉meter key="78" value="78\.000.true.real.attribute"/>
    <帕拉meter key="79" value="79\.000.true.real.attribute"/>
    <帕拉meter key="80" value="80\.000.true.real.attribute"/>
    <帕拉meter key="81" value="81\.000.true.real.attribute"/>
    <帕拉meter key="82" value="82\.000.true.real.attribute"/>
    <帕拉meter key="83" value="83\.000.true.real.attribute"/>
    <帕拉meter key="84" value="84\.000.true.real.attribute"/>
    <帕拉meter key="85" value="85\.000.true.real.attribute"/>
    <帕拉meter key="86" value="86\.000.true.real.attribute"/>
    <帕拉meter key="87" value="87\.000.true.real.attribute"/>
    <帕拉meter key="88" value="88\.000.true.real.attribute"/>
    <帕拉meter key="89" value="89\.000.true.real.attribute"/>
    <帕拉meter key="90" value="90\.000.true.real.attribute"/>
    <帕拉meter key="91" value="91\.000.true.real.attribute"/>
    <帕拉meter key="92" value="92\.000.true.real.attribute"/>
    <帕拉meter key="93" value="93\.000.true.real.attribute"/>
    <帕拉meter key="94" value="94\.000.true.real.attribute"/>
    <帕拉meter key="95" value="95\.000.true.real.attribute"/>
    <帕拉meter key="96" value="96\.000.true.real.attribute"/>
    <帕拉meter key="97" value="97\.000.true.real.attribute"/>
    <帕拉meter key="98" value="98\.000.true.real.attribute"/>
    <帕拉meter key="99" value="99\.000.true.real.attribute"/>
    <帕拉meter key="100" value="100\.000.true.real.attribute"/>
    <帕拉meter key="101" value="101\.000.true.real.attribute"/>
    <帕拉meter key="102" value="102\.000.true.real.attribute"/>
    <帕拉meter key="103" value="103\.000.true.real.attribute"/>
    <帕拉meter key="104" value="104\.000.true.real.attribute"/>
    <帕拉meter key="105" value="105\.000.true.real.attribute"/>
    <帕拉meter key="106" value="106\.000.true.real.attribute"/>
    <帕拉meter key="107" value="107\.000.true.real.attribute"/>
    <帕拉meter key="108" value="108\.000.true.real.attribute"/>
    <帕拉meter key="109" value="109\.000.true.real.attribute"/>
    <帕拉meter key="110" value="110\.000.true.real.attribute"/>
    <帕拉meter key="111" value="111\.000.true.real.attribute"/>
    <帕拉meter key="112" value="112\.000.true.real.attribute"/>
    <帕拉meter key="113" value="113\.000.true.real.attribute"/>
    <帕拉meter key="114" value="114\.000.true.real.attribute"/>
    <帕拉meter key="115" value="115\.000.true.real.attribute"/>
    <帕拉meter key="116" value="116\.000.true.real.attribute"/>
    <帕拉meter key="117" value="117\.000.true.real.attribute"/>
    <帕拉meter key="118" value="118\.000.true.real.attribute"/>
    <帕拉meter key="119" value="119\.000.true.real.attribute"/>
    <帕拉meter key="120" value="120\.000.true.real.attribute"/>
    <帕拉meter key="121" value="121\.000.true.real.attribute"/>
    <帕拉meter key="122" value="122\.000.true.real.attribute"/>
    <帕拉meter key="123" value="123\.000.true.real.attribute"/>
    <帕拉meter key="124" value="124\.000.true.real.attribute"/>
    <帕拉meter key="125" value="125\.000.true.real.attribute"/>
    <帕拉meter key="126" value="126\.000.true.real.attribute"/>
    <帕拉meter key="127" value="127\.000.true.real.attribute"/>
    <帕拉meter key="128" value="128\.000.true.real.attribute"/>
    <帕拉meter key="129" value="Class.true.binominal.label"/>
    <帕拉meter key="130" value="Age.true.integer.attribute"/>
    <帕拉meter key="131" value="Height.true.integer.attribute"/>
    <帕拉meter key="132" value="Weight.true.numeric.attribute"/>
    <帕拉meter key="133" value="BMI.true.real.attribute"/>
    <帕拉meter key="134" value="MP.true.integer.attribute"/>



    < process expanded="true">



    < portSpacing port="source_training set" spacing="0"/>
    < portSpacing port="sink_model" spacing="0"/>
    < portSpacing port="sink_through 1" spacing="0"/>

    < process expanded="true">










    < portSpacing port="source_model" spacing="0"/>
    < portSpacing port="source_test set" spacing="0"/>
    < portSpacing port="source_through 1" spacing="0"/>
    < portSpacing port="sink_test set results" spacing="0"/>
    < portSpacing port="sink_performance 1" spacing="0"/>
    < portSpacing port="sink_performance 2" spacing="0"/>






    < portSpacing port="source_input 1" spacing="0"/>
    < portSpacing port="sink_result 1" spacing="0"/>
    < portSpacing port="sink_result 2" spacing="0"/>
    < portSpacing port="sink_result 3" spacing="0"/>
    < portSpacing port="sink_result 4" spacing="0"/>



    Screen Shot 2018-01-03 at 2.09.44 PM.png

    Scott

  • sgenzersgenzer Administrator, Moderator, Employee, RapidMiner Certified Analyst, Community Manager, Member, University Professor, PM ModeratorPosts:2,959Community Manager

    sounds good. FYI you don't need a completely balanced data set to perform analysis. We have some nice tools to help in that manner. I would much rather have a data set of a few thousand rows that is unbalanced than a data set less than 100 rows that is balanced.

    Scott

Sign InorRegisterto comment.