Multivariable time series forecasting
Hello all,
I am doing a time series project in rapidminer. I am trying to forecast future with multiple independent variables.
However, i could not add the independent variables to the process. When the independent variables are windowed, they all have same value.
I tried to use "MultivariateSeries2WindowExamples" and many other tools, but could not manage it.
Can somebody help me in these regard? My process and data is attached below.
Also anothor problem i encountered is to usage of optimize parameters tool in order to optimization of horizon, and windowing size and step size, but despide all the waiting RM could not respond.
I'd be very grateful if someone could provide me any information.
Thanks in advance.
futureMonths 15 horizon 1 windowSize 6
<打开ator activated="true" class="process" compatibility="6.0.002" expanded="true" name="Process">
<打开ator activated="true" class="read_excel" compatibility="8.1.000" expanded="true" height="68" name="Read Excel" width="90" x="45" y="85">
<打开ator activated="true" class="subprocess" compatibility="8.2.000" expanded="true" height="82" name="Set Predictions_Params" width="90" x="179" y="85">
<打开ator activated="true" class="set_macro" compatibility="8.2.000" expanded="true" height="82" name="Set Window_Size" width="90" x="45" y="34">
<打开ator activated="true" class="set_macro" compatibility="8.2.000" expanded="true" height="82" name="Set Horizon" width="90" x="179" y="34">
<打开ator activated="true" class="set_macro" compatibility="8.2.000" expanded="true" height="82" name="Set Future_Years" width="90" x="313" y="34">
< portSpacing端口= " sink_out 2”间隔= " 0 " / >
<打开ator activated="true" class="set_role" compatibility="5.3.013" expanded="true" height="82" name="Set Role" width="90" x="112" y="289">
<打开ator activated="true" class="select_attributes" compatibility="8.2.000" expanded="true" height="82" name="Select Attributes" width="90" x="313" y="289">
<打开ator activated="true" class="filter_examples" compatibility="6.4.000" expanded="true" height="103" name="Filter Examples" width="90" x="447" y="85">
<打开ator activated="true" breakpoints="after" class="series:windowing" compatibility="5.2.000" expanded="true" height="82" name="Windowing for Training" width="90" x="648" y="238">
<参数键= " create_label " value = " true " / >
<打开ator activated="true" class="series:sliding_window_validation" compatibility="7.4.000" expanded="true" height="124" name="Validation" width="90" x="782" y="34">
<打开ator activated="true" class="linear_regression" compatibility="8.2.000" expanded="true" height="103" name="Linear Regression" width="90" x="112" y="85"/>
<打开ator activated="true" class="apply_model" compatibility="8.2.000" expanded="true" height="82" name="Apply Model (2)" width="90" x="112" y="34">
<打开ator activated="true" class="performance_regression" compatibility="8.2.000" expanded="true" height="82" name="Performance" width="90" x="380" y="34">
<打开ator activated="true" breakpoints="after" class="series:windowing" compatibility="5.2.000" expanded="true" height="82" name="Windowing for Application" width="90" x="849" y="493">
<打开ator activated="true" class="extract_macro" compatibility="8.2.000" expanded="true" height="68" name="Extract Example Count" width="90" x="983" y="493">
<打开ator activated="true" class="filter_example_range" compatibility="8.2.000" expanded="true" height="82" name="Filter Example Range" width="90" x="1117" y="493">
<打开ator activated="true" class="remember" compatibility="8.2.000" expanded="true" height="68" name="Remember" width="90" x="1251" y="493">
<打开ator activated="true" class="loop" compatibility="8.2.000" expanded="true" height="82" name="Loop" width="90" x="983" y="238">
<打开ator activated="true" class="recall" compatibility="8.2.000" expanded="true" height="68" name="Recall" width="90" x="45" y="136">
<打开ator activated="true" class="apply_model" compatibility="7.1.001" expanded="true" height="82" name="Apply Model" width="90" x="179" y="34">
<打开ator activated="true" class="multiply" compatibility="8.2.000" expanded="true" height="103" name="Multiply" width="90" x="447" y="30"/>
<打开ator activated="true" class="materialize_data" compatibility="8.2.000" expanded="true" height="82" name="Materialize Data (2)" width="90" x="179" y="187"/>
<打开ator activated="true" class="generate_attributes" compatibility="6.4.000" expanded="true" height="82" name="Increase Date (2)" width="90" x="380" y="187">
<打开ator activated="true" class="set_role" compatibility="5.3.013" expanded="true" height="82" name="Set Role (2)" width="90" x="179" y="340">
<打开ator activated="true" class="select_attributes" compatibility="8.2.000" expanded="true" height="82" name="Select Attributes (2)" width="90" x="313" y="340">
<打开ator activated="true" class="rename" compatibility="8.2.000" expanded="true" height="82" name="Rename" width="90" x="447" y="340">
<打开ator activated="true" class="remember" compatibility="8.2.000" expanded="true" height="68" name="Remember (2)" width="90" x="581" y="340">
<打开ator activated="true" class="append" compatibility="8.2.000" expanded="true" height="82" name="Append" width="90" x="1184" y="136"/>
<连接from_op = "读取Excel“from_port =“输出”to_op="Set Predictions_Params" to_port="in 1"/>
Answers
Hi everyone again,
I found similar question on this posthttps://community.www.turtlecreekpls.com/t5/RapidMiner-Studio-Forum/Prediction-with-several-attributes/m-p/47321#M30517
However, my question still stands. After the append except for the label other variables stays same value.
Can anyone help me on this issue.
Thanks
tagging@tftemme...
You can use free modeling of rapid miner and see path of this way...
Best regards.
@elham_calm
Hi,
As far as I know the series extension only support univariate models. You can try a windowing approach, aggregating data in each window and then applying a "normal" model like decision trees. But that's definitely different from applying multivariate time series.
If you really need the multivariate time series approach, your option is to use one of the scripting operators. I have done so successfully with Execute R and the R package "vars".
I hope that VAR models appear on the series extension someday!
Hi,
我不同意。使用窗口如聚合together with a multi-variate model like an SVM is mult-variate time series forecasting. It often also yields better results than multi-variate expansions of ARIMA.
BR,
Martin
Dortmund, Germany
Hi Martin,
I don't think it's time series from a model point of view (i.e. model with regressor and noise terms). I think the time series approach could be used if the interest lies on the model itself and its coefficients. Otherwise a more black box approach with complex models should give better predictions.
Regards,
Sebastian
Hi@SGolbert,
ahh, good. so we are on the same page.
BR,
Martin
Dortmund, Germany