Can anyone help with CNN later input error in RM's Deep Learning extension?

MickMcWilliamsMickMcWilliams MemberPosts:11Contributor II
edited May 2020 inHelp
Hi... I'm new to RapidMiner's Deep Learning extension and have encountered an issue. I'm trying to incorporate an Add Convolutional Layer operator within a Deep Learning (Tensor) operator, placing it after an Add Fully-Connected Layer operator. I'm getting an error message saying, "java.lang.IllegalStateException: Invalid input for Convolution layer (layer name='Convo Layer'): Expected CNN input, got InputTypeFeedForward(12)". I get a similar error if I make the Add Convolutional Layer operator the first add layer operator within the Deep Learning (Tensor) operator. Apparently, the Add Convolutional Layer operator expects a certain type of input but the documentation just says, "Connect this port to the layer Architecture output port of another add layer operator or to the layer port of the "Deep Learning" operator if this layer is the first one." There's no reference to the Add Convolutional Layer operator requiring a "CNN input," how to create a CNN input or even what a CNN input is. Can anyone help me out here? Thanks very much!

Best Answer

Answers

  • MickMcWilliamsMickMcWilliams MemberPosts:11Contributor II
    Thanks@hughesfleming68! First, you've helped me to realize that my "CNN input" problem was apparently just because you can't connect an Add Convolutional Layer operator to a "tensor-ized" data source. Second, your suggestions on how to develop the DL architecture are also quite helpful. Very much appreciated... :-)
    hughesfleming68
  • hughesfleming68hughesfleming68 MemberPosts:323Unicorn
    Your're welcome. Happy to help.For many tasks more complexity does not give better results so take an evolutionary approach to your networks and just add layers when you know they are helping. Training times can be long so keeping things tight will be an advantage.
  • MickMcWilliamsMickMcWilliams MemberPosts:11Contributor II
    Thanks@Hamne1r. I'm still somewhat new to Deep Learning and so was not previously familiar with dilated convolutional neural networks (DCNN). However, I'm starting to research them based on your remark and can already see how the concept would be relevant here. Are you aware of a way the DCNN approach can somehow be used to coax the RapidMiner DL extension into applying the Add Convolutional Layer operator to tensor data? Or is it that you think a "dilation" approach could be used in some other way to get around the tensor data issue to apply CNN layers to series data? Thanks again!
Sign InorRegisterto comment.