Please help me interpret my results (totally newbie to this)
Constantine
MemberPosts:2Newbie
inHelp
Hey everyone,
I would like to ask you for help, in order to help me understand the results i have.
I am in the process of doing my thesis, and for this, i'm doing an RFM analysis on a big retailer, with the help of RapidMiner.
However, i frankly do not know 90% of the stuff that are going there, as my background is in marketing. My professor was very helpful and he taught me some things and how the tool works, and he made the xml process for me. Unfortunately, he got a nasty health issue and i don't want to bother him.
I have everything ready, and i'm fairly sure i can run it, with a bit of trouble with my potato of PC. The problem is, i do not know what to make of the results and would greatly appreciate if somebody spends 1-2h with me to help explain what i'm looking at. Please excuse me but i cannot provide the dataset as it's confidential. I will paste the process below.
Thank you in advance for all the help!
Kosta
version="1.0" encoding="UTF-8"?>
I would like to ask you for help, in order to help me understand the results i have.
I am in the process of doing my thesis, and for this, i'm doing an RFM analysis on a big retailer, with the help of RapidMiner.
However, i frankly do not know 90% of the stuff that are going there, as my background is in marketing. My professor was very helpful and he taught me some things and how the tool works, and he made the xml process for me. Unfortunately, he got a nasty health issue and i don't want to bother him.
I have everything ready, and i'm fairly sure i can run it, with a bit of trouble with my potato of PC. The problem is, i do not know what to make of the results and would greatly appreciate if somebody spends 1-2h with me to help explain what i'm looking at. Please excuse me but i cannot provide the dataset as it's confidential. I will paste the process below.
Thank you in advance for all the help!
Kosta
version="1.0" encoding="UTF-8"?>
<参数可y="logverbosity" value="init"/>
<参数可y="random_seed" value="2001"/>
<参数可y="send_mail" value="never"/>
<参数可y="notification_email" value=""/>
<参数可y="process_duration_for_mail" value="30"/>
<参数可y="encoding" value="SYSTEM"/>
<参数可y="repository_entry" value="//krigas/sales"/>
<参数可y="attribute_filter_type" value="single"/>
<参数可y="attribute" value="item_id"/>
<参数可y="attributes" value=""/>
<参数可y="use_except_expression" value="false"/>
<参数可y="value_type" value="numeric"/>
<参数可y="use_value_type_exception" value="false"/>
<参数可y="except_value_type" value="real"/>
<参数可y="block_type" value="value_series"/>
<参数可y="use_block_type_exception" value="false"/>
<参数可y="except_block_type" value="value_series_end"/>
<参数可y="invert_selection" value="false"/>
<参数可y="include_special_attributes" value="false"/>
<参数可y="use_default_aggregation" value="false"/>
<参数可y="attribute_filter_type" value="all"/>
<参数可y="attribute" value=""/>
<参数可y="attributes" value=""/>
<参数可y="use_except_expression" value="false"/>
<参数可y="value_type" value="attribute_value"/>
<参数可y="use_value_type_exception" value="false"/>
<参数可y="except_value_type" value="time"/>
<参数可y="block_type" value="attribute_block"/>
<参数可y="use_block_type_exception" value="false"/>
<参数可y="except_block_type" value="value_matrix_row_start"/>
<参数可y="invert_selection" value="false"/>
<参数可y="include_special_attributes" value="false"/>
<参数可y="default_aggregation_function" value="average"/>
<参数可y="date_trns" value="count"/>
<参数可y="group_by_attributes" value="hh_id"/>
<参数可y="count_all_combinations" value="false"/>
<参数可y="only_distinct" value="false"/>
<参数可y="ignore_missings" value="true"/>
<运营商激活= " true " class = "混合:排序”compatibility="9.10.008" expanded="true" height="82" name="Sort (2)" width="90" x="581" y="136">
<列出关键= " sort_by " >
<参数可y="hh_id" value="ascending"/>
<参数可y="use_default_aggregation" value="false"/>
<参数可y="attribute_filter_type" value="all"/>
<参数可y="attribute" value=""/>
<参数可y="attributes" value=""/>
<参数可y="use_except_expression" value="false"/>
<参数可y="value_type" value="attribute_value"/>
<参数可y="use_value_type_exception" value="false"/>
<参数可y="except_value_type" value="time"/>
<参数可y="block_type" value="attribute_block"/>
<参数可y="use_block_type_exception" value="false"/>
<参数可y="except_block_type" value="value_matrix_row_start"/>
<参数可y="invert_selection" value="false"/>
<参数可y="include_special_attributes" value="false"/>
<参数可y="default_aggregation_function" value="average"/>
<参数可y="date_trns" value="maximum"/>
<参数可y="group_by_attributes" value="hh_id"/>
<参数可y="count_all_combinations" value="false"/>
<参数可y="only_distinct" value="false"/>
<参数可y="ignore_missings" value="true"/>
<参数可y="R_in_months" value="date_diff([maximum(date_trns)],date_parse_custom("03.03.2014","dd.MM.yyyy"))/6.048e+8"/>
<参数可y="keep_all" value="true"/>
<参数可y="attribute_filter_type" value="subset"/>
<参数可y="attribute" value=""/>
<参数可y="attributes" value="hh_id|R_in_months"/>
<参数可y="use_except_expression" value="false"/>
<参数可y="value_type" value="attribute_value"/>
<参数可y="use_value_type_exception" value="false"/>
<参数可y="except_value_type" value="time"/>
<参数可y="block_type" value="attribute_block"/>
<参数可y="use_block_type_exception" value="false"/>
<参数可y="except_block_type" value="value_matrix_row_start"/>
<参数可y="invert_selection" value="false"/>
<参数可y="include_special_attributes" value="false"/>
<运营商激活= " true " class = "混合:排序”compatibility="9.10.008" expanded="true" height="82" name="Sort (3)" width="90" x="849" y="238">
<列出关键= " sort_by " >
<参数可y="hh_id" value="ascending"/>
<参数可y="use_default_aggregation" value="false"/>
<参数可y="attribute_filter_type" value="all"/>
<参数可y="attribute" value=""/>
<参数可y="attributes" value=""/>
<参数可y="use_except_expression" value="false"/>
<参数可y="value_type" value="attribute_value"/>
<参数可y="use_value_type_exception" value="false"/>
<参数可y="except_value_type" value="time"/>
<参数可y="block_type" value="attribute_block"/>
<参数可y="use_block_type_exception" value="false"/>
<参数可y="except_block_type" value="value_matrix_row_start"/>
<参数可y="invert_selection" value="false"/>
<参数可y="include_special_attributes" value="false"/>
<参数可y="default_aggregation_function" value="average"/>
<参数可y="price" value="sum"/>
<参数可y="group_by_attributes" value="hh_id"/>
<参数可y="count_all_combinations" value="false"/>
<参数可y="only_distinct" value="false"/>
<参数可y="ignore_missings" value="true"/>
<运营商激活= " true " class = "混合:排序”compatibility="9.10.008" expanded="true" height="82" name="Sort" width="90" x="581" y="34">
<列出关键= " sort_by " >
<参数可y="hh_id" value="ascending"/>
<参数可y="remove_double_attributes" value="true"/>
<参数可y="join_type" value="inner"/>
<参数可y="use_id_attribute_as_key" value="false"/>
<参数可y="hh_id" value="hh_id"/>
<参数可y="keep_both_join_attributes" value="false"/>
<参数可y="remove_double_attributes" value="true"/>
<参数可y="join_type" value="inner"/>
<参数可y="use_id_attribute_as_key" value="false"/>
<参数可y="hh_id" value="hh_id"/>
<参数可y="keep_both_join_attributes" value="false"/>
<参数可y="repository_entry" value="//krigas/products"/>
<参数可y="attribute_filter_type" value="subset"/>
<参数可y="attribute" value=""/>
<参数可y="attributes" value="item_class_cd|item_id|item_sc_cd"/>
<参数可y="use_except_expression" value="false"/>
<参数可y="value_type" value="numeric"/>
<参数可y="use_value_type_exception" value="false"/>
<参数可y="except_value_type" value="real"/>
<参数可y="block_type" value="value_series"/>
<参数可y="use_block_type_exception" value="false"/>
<参数可y="except_block_type" value="value_series_end"/>
<参数可y="invert_selection" value="false"/>
<参数可y="include_special_attributes" value="false"/>
<参数可y="product_categpory" value="concat(item_grp_cd,"_",item_class_cd,"_",item_sc_cd)"/>
<参数可y="keep_all" value="true"/>
<参数可y="remove_double_attributes" value="true"/>
<参数可y="join_type" value="inner"/>
<参数可y="use_id_attribute_as_key" value="false"/>
<参数可y="item_id" value="item_id"/>
<参数可y="keep_both_join_attributes" value="false"/>
<参数可y="attribute_filter_type" value="subset"/>
<参数可y="attribute" value=""/>
<参数可y="attributes" value="hh_id|product_categpory|date_trns"/>
<参数可y="use_except_expression" value="false"/>
<参数可y="value_type" value="attribute_value"/>
<参数可y="use_value_type_exception" value="false"/>
<参数可y="except_value_type" value="time"/>
<参数可y="block_type" value="attribute_block"/>
<参数可y="use_block_type_exception" value="false"/>
<参数可y="except_block_type" value="value_matrix_row_start"/>
<参数可y="invert_selection" value="false"/>
<参数可y="include_special_attributes" value="false"/>
<参数可y="use_default_aggregation" value="false"/>
<参数可y="attribute_filter_type" value="all"/>
<参数可y="attribute" value=""/>
<参数可y="attributes" value=""/>
<参数可y="use_except_expression" value="false"/>
<参数可y="value_type" value="attribute_value"/>
<参数可y="use_value_type_exception" value="false"/>
<参数可y="except_value_type" value="time"/>
<参数可y="block_type" value="attribute_block"/>
<参数可y="use_block_type_exception" value="false"/>
<参数可y="except_block_type" value="value_matrix_row_start"/>
<参数可y="invert_selection" value="false"/>
<参数可y="include_special_attributes" value="false"/>
<参数可y="default_aggregation_function" value="average"/>
<参数可y="product_categpory" value="count"/>
<参数可y="group_by_attributes" value="hh_id"/>
<参数可y="count_all_combinations" value="false"/>
<参数可y="only_distinct" value="false"/>
<参数可y="ignore_missings" value="true"/>
<参数可y="remove_double_attributes" value="true"/>
<参数可y="join_type" value="inner"/>
<参数可y="use_id_attribute_as_key" value="false"/>
<参数可y="hh_id" value="hh_id"/>
<参数可y="keep_both_join_attributes" value="false"/>
<参数可y="count(date_trns)" value="F"/>
<参数可y="sum(price)" value="M"/>
<参数可y="R_in_months" value="R"/>
<参数可y="count(product_categpory)" value="V"/>
<参数可y="from_attribute" value=""/>
<参数可y="to_attribute" value=""/>
<参数可y="sort_mode" value="user specified"/>
<参数可y="attribute_ordering" value="hh_id|R|F|M"/>
<参数可y="use_regular_expressions" value="false"/>
<参数可y="handle_unmatched" value="append"/>
<参数可y="sort_direction" value="ascending"/>
<参数可y="attribute_filter_type" value="subset"/>
<参数可y="attribute" value=""/>
<参数可y="attributes" value="F|M|R|V"/>
<参数可y="use_except_expression" value="false"/>
<参数可y="value_type" value="attribute_value"/>
<参数可y="use_value_type_exception" value="false"/>
<参数可y="except_value_type" value="time"/>
<参数可y="block_type" value="attribute_block"/>
<参数可y="use_block_type_exception" value="false"/>
<参数可y="except_block_type" value="value_matrix_row_start"/>
<参数可y="invert_selection" value="false"/>
<参数可y="include_special_attributes" value="false"/>
<参数可y="return_preprocessing_model" value="false"/>
<参数可y="create_view" value="false"/>
<参数可y="attribute_filter_type" value="all"/>
<参数可y="attribute" value=""/>
<参数可y="attributes" value=""/>
<参数可y="use_except_expression" value="false"/>
<参数可y="value_type" value="numeric"/>
<参数可y="use_value_type_exception" value="false"/>
<参数可y="except_value_type" value="real"/>
<参数可y="block_type" value="value_series"/>
<参数可y="use_block_type_exception" value="false"/>
<参数可y="except_block_type" value="value_series_end"/>
<参数可y="invert_selection" value="false"/>
<参数可y="include_special_attributes" value="false"/>
<参数可y="method" value="Z-transformation"/>
<参数可y="min" value="0.0"/>
<参数可y="max" value="1.0"/>
<参数可y="allow_negative_values" value="false"/>
<参数可y="add_cluster_attribute" value="true"/>
<参数可y="add_as_label" value="false"/>
<参数可y="remove_unlabeled" value="false"/>
<参数可y="k" value="5"/>
<参数可y="max_runs" value="10"/>
<参数可y="determine_good_start_values" value="true"/>
<参数可y="measure_types" value="BregmanDivergences"/>
<参数可y="mixed_measure" value="MixedEuclideanDistance"/>
<参数可y="nominal_measure" value="NominalDistance"/>
<参数可y="numerical_measure" value="EuclideanDistance"/>
<参数可y="divergence" value="SquaredEuclideanDistance"/>
<参数可y="kernel_type" value="radial"/>
<参数可y="kernel_gamma" value="1.0"/>
<参数可y="kernel_sigma1" value="1.0"/>
<参数可y="kernel_sigma2" value="0.0"/>
<参数可y="kernel_sigma3" value="2.0"/>
<参数可y="kernel_degree" value="3.0"/>
<参数可y="kernel_shift" value="1.0"/>
<参数可y="kernel_a" value="1.0"/>
<参数可y="kernel_b" value="0.0"/>
<参数可y="max_optimization_steps" value="100"/>
<参数可y="use_local_random_seed" value="false"/>
<参数键= " local_random_seed " value = " 1992 " / >
0
Answers
Take a look at this videos
Clustering intro | RapidMiner
Clustering demo
In them you can learn a little more on cluster and how to interpret them and translate what you are seeing into words.
Let us know if these helps.
Thank you so much! I'll have a look today.
Can i get back to you if I have any questions?
Thank you kindly.
Kosta