

Overcoming the computational demands of time series: Scaling R-based demand forecasting with RapidMiner

2/12/2020

Strategy and Insights Global Center of Excellence

Goal

Provide Supply Chain with highly accurate, highly scalable food demand forecasts

Problem

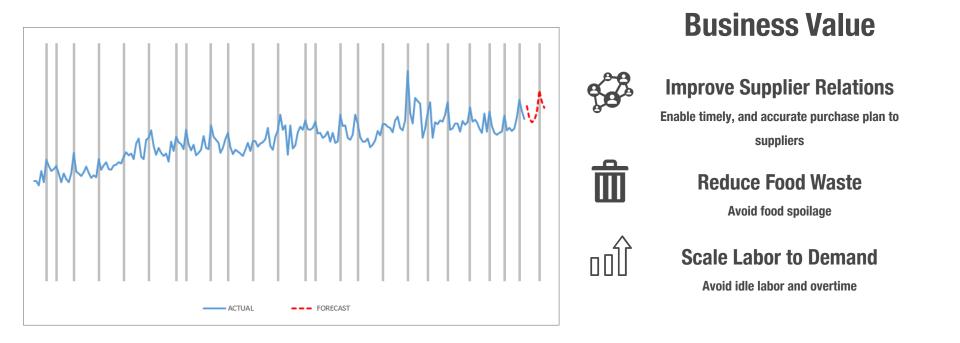
Shared resources limited; ecosystem of projects expanding rapidly

Solution

Make extensible open source time series forecasting tool; think creatively to keep footprint small

Store Inventory Lifecycle

Highly Accurate, Highly Scalable Demand Forecasts



Available Resources

Many with advanced degrees: PhD Chemistry, PhD Computer Science, PhD Physics, Masters in Applied Statistics, Masters in Electrical Engineering, Masters in Epidemiology, Masters in Industrial and Operations Engineering

50+ Team Members

Comprehensive Tech Stack

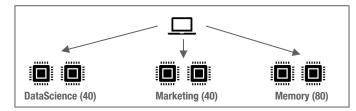
User Desktop: RapidMiner Studio, R, Python, Jupyter, SSMS

AI/ML: RapidMiner, Jupyterhub, R Studio, Nvidia GPU Server, ArcGIS, Hive,

Spark

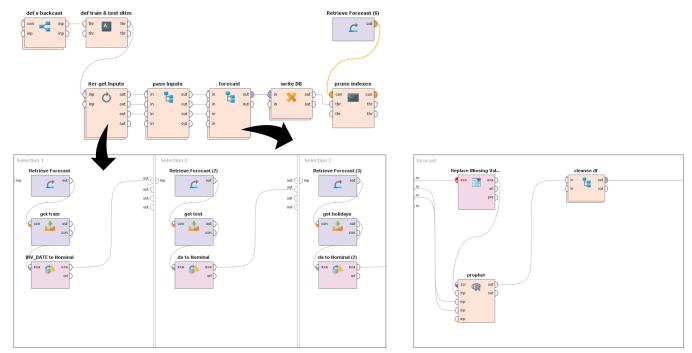
Data Stores: Sql Server, Hadoop

RapidMiner



Prototype

RapidMiner



Read demand history, promotion history, planned future promotions, & important holiday dates from database

Pass as inputs into the R implementation of Facebook's opensource timeseries forecasting package prophet

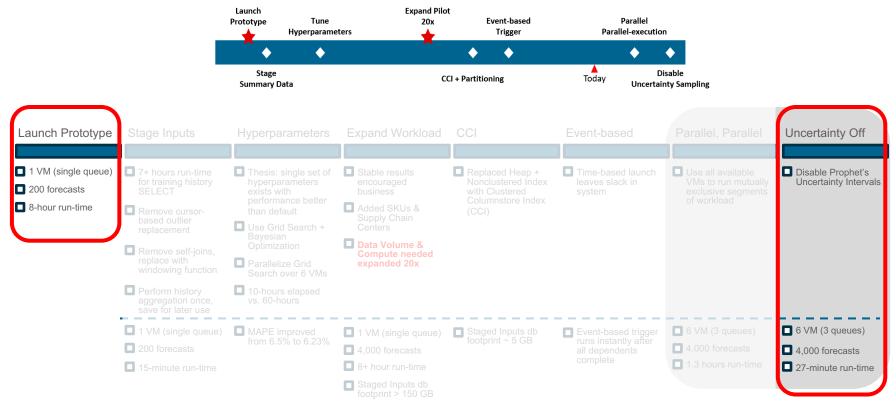
Write results into downstream applications

Prototype – (important bits of) the R Script

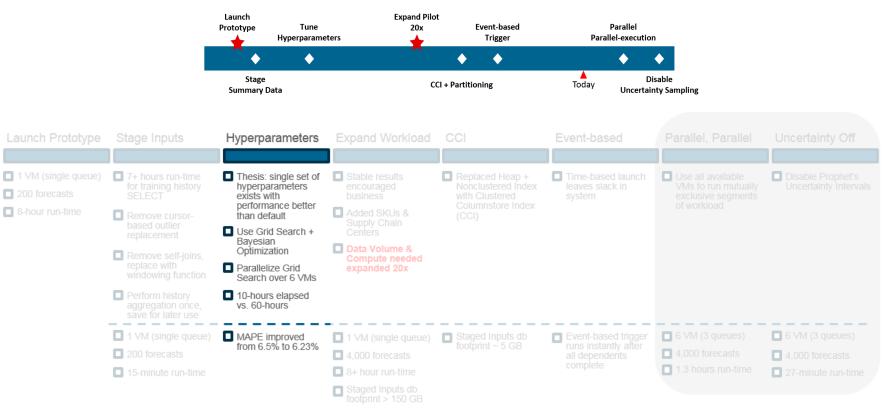
<pre># function to forecast runProphet <- function(data, SCC, sku, holidays, future){</pre>			R-script receives from RM three inputs retrieved
<pre>df <- data \$>\$ filter(SCC_NUMBER==SCC & INVENTORY_CODE==sku) \$>\$ select(INV_DATE, IDEAL_USAGE, <add \$="" any="" arrange(inv_date)="" external="" regress="">\$ rename(ds=INV_DATE, y=IDEAL_USAGE) m <- prophet(holidays = holidays,</add></pre>	aor here≻) %>%		from sql: (1) 3-yrs history of demand (2) Forecasting period (i.e., 8-weeks of future) (3) List of important holidays
<pre>daily.seasonality = F, weekly.seasonality = T, yearly.seasonality = T) m <- add_regressor(m, <add any="" external="" here="" regressor="">,</add></pre>	<pre>library(doParallel) cores <- 16 cl <- makeCluster(cores) registerDoParallel(cl, cores=cores)</pre>		Forecast function filters to a single scenario (Supply Chain Center-SKU)
<pre>m <- fit.prophet(m, df) forecast <- predict(m, future) output <- data.frame(INV_DATE=forecast\$ds,</pre>	<pre>results <- foreach(i=1:nrow(SCC_SKU), .packages=c("dplyr","prophet","data.ta .combine=function() bind_rows(list(.multicombine = T) %dopar% {</pre>		Forecast function defines prophet model, <mark>fits it, & forecasts demand</mark> , by week, for the next 8-week period
) return (output)	<pre>tryCatch ({ runProphet (tr, }, error = function } stopCluster(cl) return (data.table</pre>		Forecast function is wrapped with in a doParallel process to use 16 cores, concurrently

https://github.com/facebook/prophet

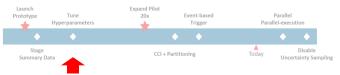
Timeline of Enhancements



Tune Hyperparameters



Tune Hyperparameters: Grid Search



Parameterize the forecast function

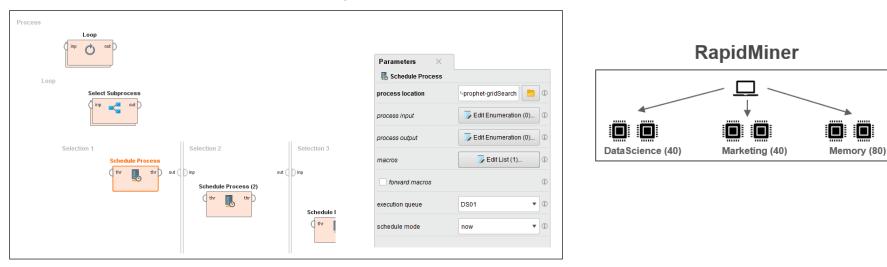
m <- prophet (holidays	= holidays,
growth	= "linear",
interval.width	= 0.95,
changepoint.prior.	<pre>scale = parameters\$changepoint_prior_scale,</pre>
n.changepoints	= parameters\$n changepoints,
daily.seasonality	= F,
weekly.seasonality	I = F,
yearly.seasonality	Y = F
)	
<pre>m <- add seasonality(m, "vearly</pre>	/", period=365.25, prior.scale=parameters\$yearly seasonality prior scale, fourier.order=parameters\$yearly fourier order)
	· · · · · · · · · · · · · · · · · · ·

Pass the new function some random values

rand_search_grid = data.frame(
0	<pre>changepoint prior_scale = sort(runif(20, 0.01, 0.1)),</pre>								
r	_changepoints	= sample(5:25, 20, replace = F),							
1 2	early prior scale	<pre>= c(sort(sample(c(runif(5, 0.01, 0.05), runif(5, 1, 10)), 10, replace = F)),</pre>							
		<pre>sort(sample(c(runif(5, 0.01, 0.05), runif(5, 1, 10)), 10, replace = F))),</pre>							
1 2	early fourier order	= sample(5:50, 20, replace $=$ F),							
1	Value	= rep(0, 20)							

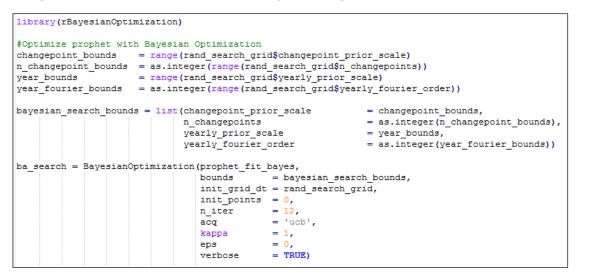
Tune Hyperparameters: Parallelize Grid Search

Run 6x Instances of Grid Search concurrently



Tune Hyperparameters: Bayesian Optimization

Wrap new forecast function with Bayesian Optimization



Seed Bayesian Optimization with Grid Search

results

Search feature-space for global optimal value of

the model evaluation metric (MAPE)

Since rBayesianOptimization seeks to maximize

the target (MAPE) pass it MAPE x (-1)

Tune Hyperparameters: Results

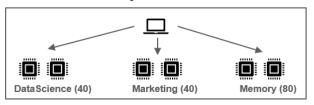
Parameter tuning generated MAPE improvement from 6.5% to 6.23% with negligible change in

standard deviation of errors

Grid search with serial execution would have elapsed 60+ hours.

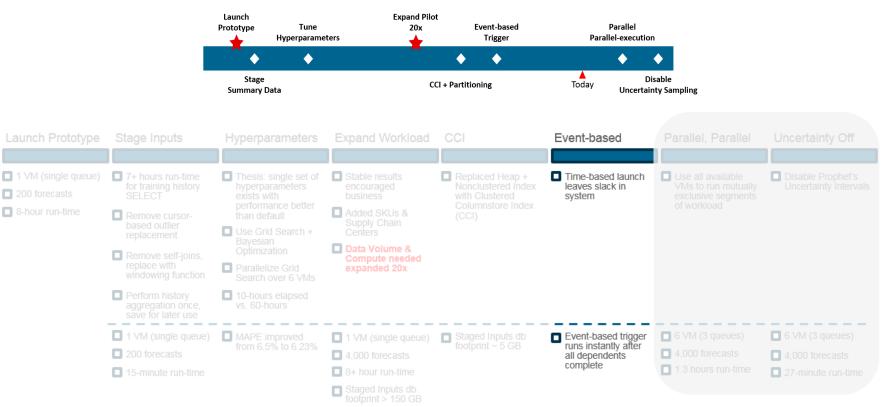
Parallel execution, across RapidMiner queues, on all nodes, took little more than 10-hours

RapidMiner

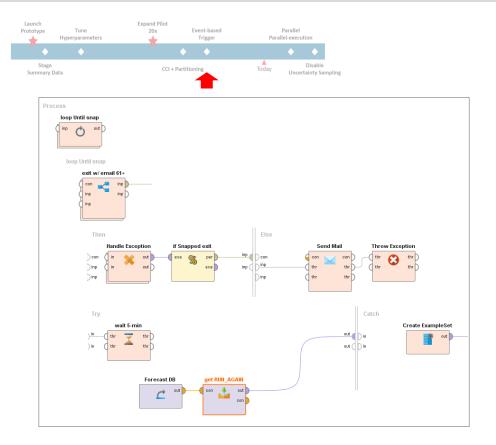


	Incumbent Model "default" (Value to Beat)>						-6.493
		Source	changepoint prior scale	n changepoints	yearly prior scale	yearly fourier order	-MAPE
	1	Bayes	0.0613	25	0.0103	5	-6.225
	2	Bayes	0.0558	25	0.0103	5	-6.226
	3	Bayes	0.0263	25	0.0103	5	-6.230
	4	Bayes	0.0976	24	0.0103	6	-6.238
	5	Bayes	0.0112	6	0.0103	14	-6.241
	6	Bayes	0.0102	5	0.0103	14	-6.246
	7	Bayes	0.0520	5	8.0059	5	-6.277
	8	Bayes	0.0676	25	0.5832	5	-6.307
	9	Bayes	0.0101	25	9.8277	5	-6.310
	10	Random Grid	0.0494	18	0.0273	7	-6.314
	11	Bayes	0.0996	5	0.0218	5	-6.319
	12	Bayes	0.0101	5	1.3091	6	-6.327
	13	Random Grid	0.0911	14	8.1657	5	-6.339
	14	Bayes	0.0997	25	9.8510	5	-6.351
	15	Bayes	0.0101	25	9.4859	10	-6.375
	16	Random Grid	0.0745	7	3.6158	8	-6.410
	17	Bayes	0.0517	25	0.9233	13	-6.413
	18	Random Grid	0.0101	19	0.0117	15	-6.415
	19	Random Grid	0.0154	11	0.0103	14	-6.416
	20	Bayes	0.0998	8	0.2519	8	-6.451
	21	Random Grid	0.0608	6	0.0233	9	-6.485
	22	Random Grid	0.0741	10	2.1330	10	-6.545
	23	Random Grid	0.0737	9	0.0232	11	-6.567
	24	Random Grid	0.0168	18	0.0126	17	-6.662
	25	Random Grid	0.0106	8	0.0138	19	-6.698
	26	Random Grid	0.0900	14	5.8429	15	-6.838
	27	Random Grid	0.0592	11	0.0395	17	-7.140
	28	Random Grid	0.0247	14	0.0458	20	-7.292
	29	Random Grid	0.0998	23	6.8460	18	-7.566
l	20	Dandom Crid	0.0476	10	6 0402	22	0 200

Event-based Trigger



Event-based Trigger



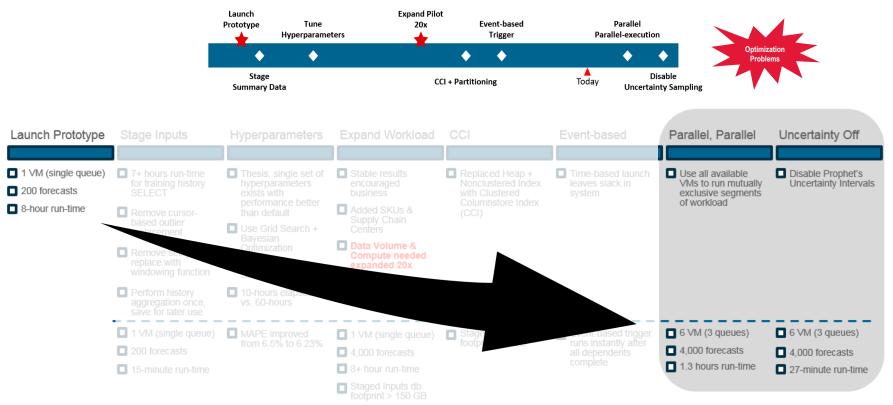
Time-boxed process start can lead to process launch before all dependents are ready, or to lost opportunity to begin ahead of schedule

Read-only replicas of EDW databases are "snapped" to the Data Science environment daily, at 4 AM, but exact timing varies

This process checks for "snap" completion, and only then allows the down-stream forecasting process to begin

The Event-based process allows our forecasting model to start "as soon as it can"

What's Next?



RapidMiner Enabled Success

- Low-code interface
 - Speedy development
 - Speedy testing
- Integration of scripting languages
- Orchestration across systems
- Server-side hosting
- Parallel execution
- Event-based process

Highly accurate, highly scalable demand

forecasts

Problem

Shared resources limited; ecosystem of competing projects expanding rapidly

Creating thinking to keep footprint small

QUESTIONS

Domino's