Strategy and Insights
Global Center of Excellence §%

Overcoming the
computational demands of

time series:
Scaling R-based demand
forecasting with RapidMiner

2/12/2020

Goal

Provide Supply Chain
with highly accurate,
highly scalable food

demand forecasts

Problem

Shared resources
limited; ecosystem of
projects expanding
rapidly

Solution

Make extensible open
source time series
forecasting tool; think
creatively to keep
footprint small

Store Inventory Lifecycle

Hungry Customer

@»\ Orders food, and depletes Store’s inventory

m Store Operator

Supply Chain

Fulfills Store’s food order, and restocks

—

Counts inventory, and orders replenishment

This stream of data
can be mined for

insights

Store’s inventory

Highly Accurate, Highly Scalable Demand Forecasts

Business Value

\ @ Improve Supplier Relations

Enable timely, and accurate purchase plan to
suppliers

= T
I]]] Reduce Food Waste

Avoid food spoilage

[ll]ﬁ Scale Labor to Demand

Avoid idle labor and overtime

Available Resources

50+ Team Members Comprehensive Tech Stack
Many with advanced degrees: User Desktop: RapidMiner Studio, R, Python, Jupyter, SSMS
. PhD Chemistry, PhD Computer Science, PhD Al/ML: RapidMiner, Jupyterhub, R Studio, Nvidia GPU Server, ArcGIS, Hive,
‘n‘ Physics, Masters in Applied Statistics, Spark
Masters in Electrical Engineering, Masters in Data Stores: Sql Server, Hadoop
Epidemiology, Masters in Industrial and
Operations Engineering RapidMiner
DataScience (40) Marketing (40) Memory (80)

Prototype

RapidMiner

def v backcast

def train & test dttm

con .c inp.
inp inp.

i

thr “ thr

thr thr

:

Retrieve Forecast (6)

iter get Inputs pass Inputs forecast write DB prune indexes
inp o out & ot
inp out in out in

out in out in

out

out

Retrieve Forecast

)

get train

b
Qo 3o

INV_DATE to Hominal

e ,:

282 8

Retrieve Forecast (2)

’

gettest

ds to Nominal

ea
’

28 83

inp

Retrieve Forecast (3)

get holidays

don 3 o
- |

con

ds to Nominal (2)

ea o
s

prophet

cleanse df

(i E: ot)
)
(|in o)

Read demand history, promotion
history, planned future
promotions, & important holiday

dates from database

Pass as inputs into the R
implementation of Facebook’s
opensource timeseries

forecasting package prophet

Write results into downstream

applications

Prototype - (important bits of) the R Script

function to forecast
runProphet <- function(data, SCC, sku, holidays, future)({

df <- data ¥>%
filter (SCC_NUMBER==SCC & INVENTORY CODE==sku) 3%>3%

select (INV_DATE, IDEARL USAGE, <add any external regressor here>) 3>%

arrange (INV_DATE) %>%
rename (ds=INV_DATE, y=IDEAL USAGE)

m <- prophet (holidays
growth

holidays,

= n

’

interval.width =
daily.seasonality =
weekly.seasonality = T,
yearly.seasonality = T

)

m <- add_regressor(m, <add any external regressor here>,

m <- fit.prophet(m, df)

forecast <- predict(m, future)

output <- data.frame(INV_DATE=forecast$ds,
SCC_NUMBER=rep (5CC, nrow(forecast))

INVENTORY_ CODE=rep (sku, nrow(forecasg
Forecast=forecast$yhat,

library(doParallel)

cores <- 16
cl <- makeCluster (cores)
registerDoParallel (cl, cores=cores)

results <- foreach(i=I:nrow(SCC_SKU),
.packages=c("dplyr", "prophet"”, "data.ta
.combine=function(...) bind_rows(list(
.multicombine = T

) %dopars {

options(stringsAsFactors = F)

scC <- SCC_SKU$SCC_NUMBER[1]
sku <- SCC_SKU$INVENTORY CODE([i]

tryCatch({

runProphet (train, SCC, sku, holidays, future)
IE
error = function(e) {

}
stopCluster(cl)

return(data.table(results))

Lo_95=0,
Hi_ 95=0
)
return (output)
m) .

R-script receives from RM three inputs retrieved

from sql:
(1) 3-yrs history of demand
(2) Forecasting period (i.e., 8-weeks of future)

(3) List of important holidays

Forecast function filters to a single scenario
(Supply Chain Genter-SKU)

Forecast function defines prophet model, fits it,
& forecasts demand, by week, for the next 8-

week period

Forecast function is wrapped with in a

doParallel process to use 16 cores, concurrently

https://facebook.github.io/prophet/
https://github.com/facebook/prophet

Timeline of Enhancements

Launch Expand Pilot
Prototype

20x

Tune Event-based
Hyperparameters

Trigger

Parallel
Parallel-execution

A .
Stage T Disable
Summary Data CCl + Partitioning Today

Uncertainty Sampling

Launch Prototype

0 1 VM (single queue)

0 200 forecasts

0 8-hour run-time

Uncertainty Off

0 Disable Prophet's
Uncertainty Intervals

0 6 VM (3 queues)
D 4,000 forecasts

D 27-minute run-time

————/

Tune Hyperparameters

Launch Expand Pilot
Prototype Tune 20x Event-based Parallel
Hyperparameters Trigger Parallel-execution

Stage A Disable

CCl + Partitioning Today

Summary Data Uncertainty Sampling

Hyperparameters

B Thesis: single set of
hyperparameters
exists with
performance better
than default

0 use Grid Search +
Bayesian
Optimization

0 Parallelize Grid
Search over 6 VMs

B 10-hours elapsed
vs. 60-hours

) MAPE improved
from 6.5% to 6.23%

Tune Hyperparameters: Grid Search

*

Parameterize the forecast function

m <- prophet (holidays

)

m <- add seasonality(m, "v

growth

interval.width
changepoint.prior.scale
n.changepoints
daily.seasonality
weekly.seasonality
yearly.seasonality

holidays,

parameters§changepoint_ prior scale,
parameters$n changepoints,

period=365.25, prior.scale=parametersSyearly_seasonality_prior_scale,

fourier.order=parameters$yearly fourier order)

Pass the new function some random values

rand search_grid = data.frame(
changepoint_prior_scale = sort(runif(20, 0.01, 0.1)),
n_changepoints = sample(5:25, 20, replace = F),
yearly prior_scale = c(sort(sample(c(runif(5, 0.01, 0.05), runif(5, 1,
sort (sample (c(runif (S, 01, 0.05), runif(s, 1,
yearly fourier order = sample(5:50, 20, replace = F),
Value = rep(0, 20)

0.
00,

10, replace
10, replace

E)).
E))).

Tune Hyperparameters: Parallelize Grid Search

. 5
Run 6x Instances of Grid Search concurrently

Loop

Select Subprocess

Schedule Process

thr E) thr) out inp out inp

Schedule Process (2)

thr % thr

Schedule |

(thr I

Parameters

% schedule Process

process location
process input
process output
macros

forward macros
execution queue

schedule mode

‘-prophet-gridSearch |~ " |

Ds01 v ®

RapidMiner

DataScience (40) Marketing (40) Memory (80)

Tune Hyperparameters: Bayesian Optimization

. 5
Wrap new forecast function with Bayesian Optimization

library(rBayesianOptimization)

#0Optimize prophet with Bayesian Optimization

changepoint_bounds range(rand_search_gridschangepoint_prior_scale)
n_changepoint_bounds as.integer(range(rand_search grid$n_changepoints))

year_ bounds :ange(rand_search_gridsyearly_prior_scale)

year_ fourier bounds as.inceger(:ange(rand_search_gridSyearly_fourier_order))

[/ T

bayesian_ search bounds = list(changepoint_prior_ scale
n_changepoints
yearly prior_ scale
yearly fourier_ order

changepoint_bounds,

as.integer (n_changepoint_bounds),
year_bounds,

as.integer (year_fourier bounds))

ba_search = BayesianOptimization(prophet_ fit_baves,
bounds bayesian search bounds,
init_grid dt rand search_grid,
init_points :
n_iter
acqg
kappa
eps
verbose

Seed Bayesian Optimization with Grid Search

results

Search feature-space for global optimal value of

the model evaluation metric (VAPE)

Since rBayesianOptimization seeks to maximize
the target (MAPE) pass it MAPE x (-1)

Tune Hyperparameters: Results

Launch Expand Pilot
Prototype Tune 20x Event-based Parallel
Hyperparameters Trigger Parallel-execution

Stage Disable
CCl + Partitioning Today

Summary Data l Uncertainty Sampling

Parameter tuning generated MAPE improvement from 6.5% to 6.23% with negligible change in

standard deviation of errors

Grid search with serial execution would have elapsed 60+ hours.

Parallel execution, across RapidMiner queues, on all nodes, took little more than 10-hours

RapidMiner

DataScience (40) Marketing (40)

W B NG Wn B W e

N R T e T
G R URNRSDL®UO W E W0~ O

26
27
28
29

sn

Incumbent Model “default” (Value to Beat) -->

Source chan_gepoint -n yearly prior yearly fourier
prior scale changepoints scale order
Bayes 0.0613 25 0.0103
Bayes 0.0558 25 0.0103
Bayes 0.0263 25 0.0103
Bayes 0.0976 24 0.0103
Bayes 0.0112 6 0.0103
Bayes 0.0102 5 0.0103
Bayes 0.0520 5 8.0059
Bayes 0.0676 25 0.5832
Bayes 0.0101 25 9.8277
Random Grid 0.0494 18 0.0273
Bayes 0.0996 5 0.0218
Bayes 0.0101 5 1.3091
Random Grid 0.0911 14 8.1657
Bayes 0.0997 25 9.8510
Bayes 0.0101 25 9.4859
Random Grid 0.0745 7 3.6158
Bayes 0.0517 25 09233
Random Grid 0.0101 19 0.0117
Random Grid 0.0154 11 0.0103
Bayes 0.0998 8 0.2519
Random Grid 0.0608 6 0.0233
Random Grid 0.0741 10 21330
Random Grid 0.0737 9 0.0232
Random Grid 0.0168 18 0.0126
Random Grid 0.0106 8 0.0138
Random Grid 0.0900 14 5.8429
Random Grid 0.0592 11 0.0395
Random Grid 0.0247 14 0.0458
Random Grid 0.0998 23 6.8460

Pomdam ;i nAsae 10 £ou03

I Domino’s Strategy and Insights Global Center of Excellence | Scaling Timeseries with RapidMiner

6493

-MAPE

13

Event-based Trigger

Launch Expand Pilot
Prototype Tune 20x Event-based Parallel
Hyperparameters Trigger Parallel-execution

A Disable

Stage CCl + Partitioning Today

Summary Data Uncertainty Sampling

Event-based

O Time-based launch
leaves slack in
system

Event-based trigger
runs instantly after
all dependents
complete

Event-based Trigger

loop Until snap

exit w/ email 61+

Handle Exception

if Snapped exit

ot
"~

inp (| in out

= %

per
exa

wait 5-min

Qe = thr])
in (] thr - thr|)

Forecast DB

get RUN_AGAIN

Send Mail

Throw Exception

=2

o

out

4
= |
con

thr O thr
thr thr

Create ExampleSet

Time-boxed process start can lead to process launch before all
dependents are ready, or to lost opportunity to begin ahead of

schedule

Read-only replicas of EDW databases are “snapped” to the Data

Science environment daily, at 4 AM, but exact timing varies

This process checks for “snap” completion, and only then

allows the down-stream forecasting process to begin

The Event-based process allows our forecasting model to start

“as soon as it can”

What's Next?

Launch Expand Pilot
Prototype Tune 20x Event-based Parallel
Hyperparameters Trigger Parallel-execution

Optimization
Problems

A .
Stage T Disable
Summary Data CCl + Partitioning Today Uncertainty Sampling

Launch Prototype Parallel, Parallel Uncertainty Off

0 1 vM (single queue) 0 use all available 0 Disable Prophet's
I VMSs to run mutually Uncertainty Intervals
0 200 forecasts exclusive segments
of workload

0 &-hour run-time

[6 VM (3 queues) 0 6 WM (3 queues)
[4,000 forecasts [4.000 forecasts
0 1.3 hours run-time [27-minute run-time

RapidMiner Enabled Success

Low-code interface
» Speedy development
» Speedy testing

Goal

Highly accurate, highly scalable demand

@

forecasts

 Integration of scripting languages Problem

Shared resources limited; ecosystem of

<

* Orchestration across systems

competing projects expanding rapidly

« Server-side hosting Solution

. [Creating thinking to keep footprint small
« Parallel execution " ing thinki !

» Event-based process

QUESTIONS

